 #jsDisabledContent { display:none; } My Account |  Register |  Help Flag as Inappropriate This article will be permanently flagged as inappropriate and made unaccessible to everyone. Are you certain this article is inappropriate?          Excessive Violence          Sexual Content          Political / Social Email this Article Email Address:

# Lukacs's proportion-sum independence theorem

Article Id: WHEBN0024187952
Reproduction Date:

 Title: Lukacs's proportion-sum independence theorem Author: World Heritage Encyclopedia Language: English Subject: Collection: Publisher: World Heritage Encyclopedia Publication Date:

### Lukacs's proportion-sum independence theorem

In statistics, Lukacs's proportion-sum independence theorem is a result that is used when studying proportions, in particular the Dirichlet distribution. It is named for Eugene Lukacs.

## The theorem

If Y1 and Y2 are non-degenerate, independent random variables, then the random variables

W=Y_1+Y_2\text{ and }P = \frac{Y_1}{Y_1+Y_2}

are independently distributed if and only if both Y1 and Y2 have gamma distributions with the same scale parameter.

### Corollary

Suppose Y ii = 1, ..., k be non-degenerate, independent, positive random variables. Then each of k − 1 random variables

P_i=\frac{Y_i}{\sum_{i=1}^k Y_i}

is independent of

W=\sum_{i=1}^k Y_i

if and only if all the Y i have gamma distributions with the same scale parameter.