World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0003847155
Reproduction Date:

Title: MT/s  
Author: World Heritage Encyclopedia
Language: English
Subject: Athlon, Centrino, Pentium M, MP6, P6 (microarchitecture), Intel Core (microarchitecture), Socket P, DDR4 SDRAM
Publisher: World Heritage Encyclopedia


In computer technology, transfers per second and its more common derivatives gigatransfers per second (abbreviated GT/s) and megatransfers per second (MT/s) are informal language that refer to the number of operations transferring data that occur in each second in some given data-transfer channel. It is also known as sample rate, i.e. the number of data samples captured per second, each sample normally occurring at the clock edge. The terms are neutral with respect to the method of physically accomplishing each such data-transfer operation; nevertheless they are most commonly used in the context of transmission of digital data. 1 MT/s is 106 or one million transfers per second. In the US/short scale, 1 GT/s means 109 or one billion transfers per second.

These terms alone do not specify the bit rate at which binary data is being transferred, because they do not specify the number of bits transferred in each transfer operation (known as the channel width or word length). In order to calculate the data transmission rate, one must multiply the transfer rate by the information channel width. For example, a data bus 8 bytes wide by definition transfers 8 bytes in each transfer operation; at a transfer rate of 1 GT/s, the data rate would be 8x109 bytes/s, i.e., 8 GB/s, or approximately 8.59 GiB/s.

The formula for a data transfer rate: Channel width (bits/transfer) × transfers/second = bits transferred/second

Expanding the width of a channel, for example that between a CPU and a northbridge, increases data throughput without requiring an increase in the channel's operating frequency (measured in transfers per second). This is analogous to increasing throughput by increasing bandwidth but leaving latency unchanged.

The units usually refer to the "effective" number of transfers, or transfers perceived from "outside" of a system or component, as opposed to the internal speed or rate of the clock of the system. One example is a computer bus running at double data rate where data is transferred on both the rising and falling edge of the clock signal. If its internal clock runs at 100 MHz, then the effective rate is 200 MT/s, because there are 100 million rising edges per second and 100 million falling edges per second of a clock signal running at 100 MHz.

SCSI (Small Computer Systems Interface) falls in the megatransfer range of data transfer rate, while newer bus architectures like the front side bus, Quick Path Interconnect, PCI Express and HyperTransport operate at the rate of a few GT/s.

See also

External links

  • Megatransfer (definition)
  • What does GT/s mean, anyway?
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.