#jsDisabledContent { display:none; } My Account |  Register |  Help

# Scalar (physics)

Article Id: WHEBN0003588425
Reproduction Date:

 Title: Scalar (physics) Author: World Heritage Encyclopedia Language: English Subject: Collection: Publisher: World Heritage Encyclopedia Publication Date:

### Scalar (physics)

In physics, a scalar is a one-dimensional physical quantity, i.e. one that can be described by a single real number (sometimes signed, often with units), unlike (or as a special case of) vectors, tensors, etc. which are described by several numbers which characterize magnitude and direction. Formally, a scalar is unchanged by coordinate system rotations or reflections (in Newtonian mechanics), or by Lorentz transformations or space-time translations (in relativity). A related concept is a pseudoscalar, which is invariant under proper rotations but (like a pseudovector) flips sign under improper rotations. The concept of a scalar in physics is essentially the same as in mathematics.

An example of a scalar quantity is temperature: the temperature at a given point is a single number. Velocity, on the other hand, is a vector quantity: velocity in three-dimensional space is specified by three values; in a Cartesian coordinate system the values are the speeds relative to each coordinate axis.

## Physical quantity

A physical quantity is expressed as the product of a numerical value and a physical unit, not merely a number. The quantity does not depend on the unit (e.g. for distance, 1 km is the same as 1000 m), although the number depends on the unit. Thus, following the example of distance, the quantity does not depend on the length of the base vectors of the coordinate system. Also, other changes of the coordinate system may affect the formula for computing the scalar (for example, the Euclidean formula for distance in terms of coordinates relies on the basis being orthonormal), but not the scalar itself. In this sense, physical distance deviates from the definition of metric in not being just a real number; however it satisfies all other properties. The same applies for other physical quantities which are not dimensionless. Direction does not apply to scalars; they are specified by magnitude or quantity alone.

## Examples in classical physics

Some examples of scalars include the mass, charge, volume, time, speed, temperature,[1] or electric potential at a point inside a medium. The distance between two points in three-dimensional space is a scalar, but the direction from one of those points to the other is not, since describing a direction requires two physical quantities such as the angle on the horizontal plane and the angle away from that plane. Force cannot be described using a scalar, since force is composed of direction and magnitude, however, the magnitude of a force alone can be described with a scalar, for instance the gravitational force acting on a particle is not a scalar, but its magnitude is. The speed of an object is a scalar (e.g. 180 km/h), while its velocity is not (i.e. 180 km/h north). Other examples of scalar quantities in Newtonian mechanics include electric charge and charge density.

An example of a pseudoscalar is the scalar triple product (see vector), and thus the signed volume.[2] Another example is magnetic charge (as it is mathematically defined, regardless of whether it actually exists physically).

## Scalars in relativity theory

In the theory of relativity, one considers changes of coordinate systems that trade space for time. As a consequence, several physical quantities that are scalars in "classical" (non-relativistic) physics need to be combined with other quantities and treated as four-dimensional vectors or tensors. For example, the charge density at a point in a medium, which is a scalar in classical physics, must be combined with the local current density (a 3-vector) to comprise a relativistic 4-vector. Similarly, energy density must be combined with momentum density and pressure into the stress–energy tensor.

Examples of scalar quantities in relativity include electric charge, spacetime interval (e.g., proper time and proper length), and invariant mass.

## References

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.

Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.