World Library  
Flag as Inappropriate
Email this Article

Ordered field

Article Id: WHEBN0000022430
Reproduction Date:

Title: Ordered field  
Author: World Heritage Encyclopedia
Language: English
Subject: Inequality (mathematics), Complex number, Real number, Field (mathematics), Surreal number
Collection: Ordered Algebraic Structures, Ordered Groups, Real Algebraic Geometry
Publisher: World Heritage Encyclopedia

Ordered field

In mathematics, an ordered field is a field together with a total ordering of its elements that is compatible with the field operations. Historically, the axiomatization of an ordered field was abstracted gradually from the real numbers, by mathematicians including David Hilbert, Otto Hölder and Hans Hahn. In 1926, this grew eventually into the Artin–Schreier theory of ordered fields and formally real fields.

An ordered field necessarily has characteristic 0, all natural numbers, i.e. the elements 0, 1, 1 + 1, 1 + 1 + 1, … are distinct. This implies that an ordered field necessarily contains an infinite number of elements: a finite field cannot be ordered.

Every subfield of an ordered field is also an ordered field in the inherited order. Every ordered field contains an ordered subfield that is isomorphic to the rational numbers. Any Dedekind-complete ordered field is isomorphic to the real numbers. Squares are necessarily non-negative in an ordered field. This implies that the complex numbers cannot be ordered since the square of the imaginary unit i is −1. Every ordered field is a formally real field.


  • Definitions 1
    • Total order 1.1
    • Positive cone 1.2
    • Equivalence of the two definitions 1.3
    • Fan 1.4
  • Properties of ordered fields 2
    • Vector spaces over an ordered field 2.1
  • Examples of ordered fields 3
  • Which fields can be ordered? 4
  • Topology induced by the order 5
  • Harrison topology 6
  • Superordered fields 7
  • See also 8
  • Notes 9
  • References 10


There are two equivalent definitions of an ordered field. The definition of total order appeared first historically and is a first-order axiomatization of the ordering ≤ as a binary predicate. Artin and Schreier gave the definition in terms of positive cone in 1926, which axiomatizes the subcollection of nonnegative elements. Although the latter is higher-order, viewing positive cones as maximal prepositive cones provides a larger context in which field orderings are extremal partial orderings.

Total order

A field (F, + ,×) together with a total order ≤ on F is an ordered field if the order satisfies the following properties:

  • if ab then a + cb + c
  • if 0 ≤ a and 0 ≤ b then 0 ≤ a×b

The symbol for multiplication will be henceforth omitted.

Positive cone

A prepositive cone or preordering of a field F is a subset PF that has the following properties:[1]

  • For x and y in P, both x+y and xy are in P.
  • If x is in F, then x2 is in P.
  • The element −1 is not in P.

A preordered field is a field equipped with a preordering P. Its non-zero elements P form a subgroup of the multiplicative group of F.

If in addition, the set F is the union of P and −P, we call P a positive cone of F. The non-zero elements of P are called the positive elements of F.

An ordered field is a field F together with a positive cone P.

The preorderings on F are precisely the intersections of families of positive cones on F. The positive cones are the maximal preorderings.[1]

Equivalence of the two definitions

Let F be a field. There is a bijection between the field orderings of F and the positive cones of F.

Given a field ordering ≤ as in Def 1, the elements such that x ≥ 0 forms a positive cone of F. Conversely, given a positive cone P of F as in Def 2, one can associate a total ordering ≤P by setting xP y to mean yxP. This total ordering ≤P satisfies the properties of Def 1.


A fan on F is a preordering T with the property that if S is a subgroup of index 2 in F containing T-{0} and not containing −1 then S is an ordering (that is, S is closed under addition).[2]

Properties of ordered fields

The property a > 0 \and x < y \Rightarrow ax < ay
The property x < y \Rightarrow a+x < a+y
  • If x < y and y < z, then x < z. (transitivity)
  • If x < y and z > 0, then xz < yz.
  • If x < y and x,y > 0, then 1/y < 1/x

For every a, b, c, d in F:

  • Either −a ≤ 0 ≤ a or a ≤ 0 ≤ −a.
  • We are allowed to "add inequalities": If ab and cd, then a + cb + d
  • We are allowed to "multiply inequalities with positive elements": If ab and 0 ≤ c, then acbc.
  • 1 is positive. (Proof: either 1 is positive or −1 is positive. If −1 is positive, then (−1)(−1) = 1 is positive, which is a contradiction)
  • An ordered field has characteristic 0. (Since 1 > 0, then 1 + 1 > 0, and 1 + 1 + 1 > 0, etc. If the field had characteristic p > 0, then −1 would be the sum of p − 1 ones, but −1 is not positive). In particular, finite fields cannot be ordered.
  • Squares are non-negative. 0 ≤ a2 for all a in F. (Follows by a similar argument to 1 > 0)

Every subfield of an ordered field is also an ordered field (inheriting the induced ordering). The smallest subfield is isomorphic to the rationals (as for any other field of characteristic 0), and the order on this rational subfield is the same as the order of the rationals themselves. If every element of an ordered field lies between two elements of its rational subfield, then the field is said to be Archimedean. Otherwise, such field is a non-Archimedean ordered field and contains infinitesimals. For example, the real numbers form an Archimedean field, but hyperreal numbers form a non-Archimedean field, because it extends real numbers with elements greater than any standard natural number.[3]

An ordered field K is isomorphic to the real number field if every non-empty subset of K with an upper bound in K has a least upper bound in K. This property implies that the field is Archimedean.

Vector spaces over an ordered field

Vector spaces (particularly, n-spaces) over an ordered field exhibit some special properties and have some specific structures, namely: orientation, convexity, and positively-definite inner product. See Real coordinate space#Geometric properties and uses for discussion of those properties of Rn, which can be generalized to vector spaces over other ordered fields.

Examples of ordered fields

Examples of ordered fields are:

The surreal numbers form a proper class rather than a set, but otherwise obey the axioms of an ordered field. Every ordered field can be embedded into the surreal numbers.

Which fields can be ordered?

Every ordered field is a formally real field, i.e., 0 cannot be written as a sum of nonzero squares.[4][5]

Conversely, every formally real field can be equipped with a compatible total order, that will turn it into an ordered field. (This order need not be uniquely determined.)[6]

Finite fields and more generally fields of finite characteristic cannot be turned into ordered fields, because in characteristic p, the element −1 can be written as a sum of (p − 1) squares 12. The complex numbers also cannot be turned into an ordered field, as −1 is a square (of the imaginary number i) and would thus be positive. Also, the p-adic numbers cannot be ordered, since Q2 contains a square root of −7 and Qp (p > 2) contains a square root of 1 − p.

Topology induced by the order

If F is equipped with the order topology arising from the total order ≤, then the axioms guarantee that the operations + and × are continuous, so that F is a topological field.

Harrison topology

The Harrison topology is a topology on the set of orderings XF of a formally real field F. Each order can be regarded as a multiplicative group homomorphism from F onto ±1. Giving ±1 the discrete topology and ±1F the product topology induces the subspace topology on XF. The Harrison sets H(a) = \{ P \in X_F : a \in P \} form a subbasis for the Harrison topology. The product is a Boolean space (compact, Hausdorff and totally disconnected), and XF is a closed subset, hence again Boolean.[7][8]

Superordered fields

A superordered field is a totally real field in which the set of sums of squares forms a fan.[9]

See also


  1. ^ a b Lam (2005) p. 289
  2. ^ Lam (1983) p.39
  3. ^ Bair, Jaques; Henry, Valérie. "Implicit differentiation with microscopes".  
  4. ^ Lam (2005) p. 41
  5. ^ Lam (2005) p. 232
  6. ^ Lam (2005) p. 236
  7. ^ Lam (2005) p. 271
  8. ^ Lam (1983) pp.1-2
  9. ^ Lam (1983) p.45


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.