World Library  
Flag as Inappropriate
Email this Article

Meteorite weathering

Article Id: WHEBN0032214675
Reproduction Date:

Title: Meteorite weathering  
Author: World Heritage Encyclopedia
Language: English
Subject: Buzzard Coulee meteorite, Meteorite find, Blithfield meteorite, Chergach, St-Robert meteorite
Collection: Meteorite Mineralogy and Petrology
Publisher: World Heritage Encyclopedia

Meteorite weathering

Two children are sitting within the corrosion grooves of the Willamette meteorite. Considerable mass has been lost to terrestrial weathering.
A Sikhote-Alin meteorite with visible rust.

Meteorite weathering is the terrestrial alteration of a meteorite. Most meteorites date from the oldest times in the Solar System and are by far the oldest material available on our planet. Despite their age, they are vulnerable to the terrestrial environment. Water, chlorine and oxygen attack meteorites as soon they reach the ground.

Weathering scales

In order to quantify the degree of alteration that a meteorite experienced, several qualitative weathering indices have been applied to antarctic and desertic samples.[1]

The most known weathering scale is based upon the effects seen in polished thin sections and it ranges from W0 (pristine) to W6 (heavy alteration). It was proposed by Jull A. J. T. et al.[2] (1991) and updated by Wlotzka[3][4](1993) and Al-Kathiri et al.[5](2005).

  • W0: no visible oxidation of metal or troilite, but may be noticeable in transmitted light a limonitic staining. Usually recently fallen meteorites are of this grade, although some are already W1.
  • W1: small oxide rims around metal and troilite, small oxide veins.
  • W2: moderate oxidation of metal (about 20-60% replaced).
  • W3: heavy oxidation of metal and troilite (60-95% replaced).
  • W4: complete oxidation of metal and troilite (>95% replaced), but no alteration of silicates.
  • W5: beginning alteration of mafic silicates, mainly along cracks.
  • W6: heavy replacement of silicates by clay minerals and oxides.

The Meteorite Working Group at the Johnson Space Center uses weathering categories A B, C and E to denote the alteration of antarctic meteorites.[1] Their official definitions are:[6]

  • A: Minor rustiness; rust haloes on metal particles and rust stains along fractures are minor.
  • B: Moderate rustiness; large rust haloes occur on metal particles and rust stains on internal fractures are extensive.
  • C: Severe rustiness; metal particles have been mostly stained by rust throughout.
  • E: Evaporite minerals visible to the naked eye.

See also


  1. ^ a b P. A. Bland, M. E. Zolensky, G. K. Benedix, M. A. Sephton. "Weathering of Chondritic Meteorites"
  2. ^ Jull, A. J. T.; Wlotzka, F.; Donahue, D. J. (1991). "Terrestrial Ages and Petrologic Description of Roosevelt County Meteorites". Abstracts of the Lunar and Planetary Science Conference 22: 667.  
  3. ^ Wlotzka, F. (1993). "A Weathering Scale for the Ordinary Chondrites". Meteoritics 28: 460.  
  4. ^ Wlotzka, F.; Jull, A. J. T.; Donahue, D. J. (1995). "Carbon-14 Terrestrial Ages of Meteorites from Acfer, Algeria". Workshop on Meteorites from Cold and Hot Deserts: 72.  
  5. ^ Al-Kathiri, A.; Hofmann, B. A.; Jull, A. J. T.; Gnos, E. (2005). "Weathering of meteorites from Oman: Correlation of chemical and mineralogical weathering proxies with14C terrestrial ages and the influence of soil chemistry". Meteoritics & Planetary Science 40 (8): 1215–1239.  
  6. ^
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.