 #jsDisabledContent { display:none; } My Account |  Register |  Help Flag as Inappropriate This article will be permanently flagged as inappropriate and made unaccessible to everyone. Are you certain this article is inappropriate?          Excessive Violence          Sexual Content          Political / Social Email this Article Email Address:

# Cartan formalism (physics)

Article Id: WHEBN0000973430
Reproduction Date:

 Title: Cartan formalism (physics) Author: World Heritage Encyclopedia Language: English Subject: Collection: Publisher: World Heritage Encyclopedia Publication Date:

### Cartan formalism (physics)

This page covers applications of the Cartan formalism. For the general concept see Cartan connection.

The vierbein or tetrad theory much used in theoretical physics is a special case of the application of Cartan connection in four-dimensional manifolds. It applies to metrics of any signature. (See metric tensor.) This section is an approach to tetrads, but written in general terms. In dimensions other than 4, words like triad, pentad, zweibein, fünfbein, elfbein etc. have been used. Vielbein covers all dimensions. (In German, vier stands for four and viel stands for many.)

For a basis-dependent index notation, see tetrad (index notation).

## Contents

• The basic ingredients 1
• Example: general relativity 2
• Constructions 3
• The Palatini action 4
• Notes 5

## The basic ingredients

Suppose we are working on a differential manifold M of dimension n, and have fixed natural numbers p and q with

p + q = n.

Furthermore, we assume that we are given a SO(p, q) principal bundle B over M and a SO(pq)-vector bundle V associated to B by means of the natural n-dimensional representation of SO(pq). Equivalently, V is a rank n real vector bundle over M, equipped with a metric η with signature (p, q) (aka non degenerate quadratic form).

The basic ingredient of the Cartan formalism is an invertible linear map e\colon{\rm T}M\to V, between vector bundles over M where TM is the tangent bundle of M. The invertibility condition on e is sometimes dropped. In particular if B is the trivial bundle, as we can always assume locally, V has a basis of orthogonal sections f_a = f_1 \ldots f_n. With respect to this basis \eta_{ab} = \eta(f_a, f_b) = {\rm diag}(1,\ldots 1, -1, \ldots, -1) is a constant matrix. For a choice of local coordinates x^\mu = x^{-1}, \ldots, x^{-n} on M (the negative indices are only to distinguish them from the indices labeling the f_a) and a corresponding local frame \partial_\mu = \frac{\partial}{\partial x^\mu} of the tangent bundle, the map e is determined by the images of the basis sections

e_a := e(f_a) := e^\mu_a \partial_\mu.

They determine a (non coordinate) basis of the tangent bundle (provided e is invertible and only locally if B is only locally trivialised). The matrix e^\mu_a , \mu = -1, \dots, -n, a = 1, \dots, n is called the tetrad, vierbein, vielbein etc.. Its interpretation as a local frame crucially depends on the implicit choice of local bases.

Note that an isomorphism V \cong {\rm T}M gives a reduction B \to {\rm Fr}(M) of the frame bundle, the principal bundle of the tangent bundle. In general, such a reduction is impossible for topological reasons. Thus, in general for continuous maps e, one cannot avoid that e becomes degenerate at some points of M.

## Example: general relativity

We can describe geometries in general relativity in terms of a tetrad field instead of the usual metric tensor field. The metric tensor g_{\alpha\beta}\! gives the inner product in the tangent space directly:

\langle \mathbf{x},\mathbf{y} \rangle = g_{\alpha\beta} \, x^{\alpha} \, y^{\beta}.\,

The tetrad e_{\alpha}^i may be seen as a (linear) map from the tangent space to Minkowski space that preserves the inner product. This lets us find the inner product in the tangent space by mapping our two vectors into Minkowski space and taking the usual inner product there:

\langle \mathbf{x},\mathbf{y} \rangle = \eta_{ij} (e_{\alpha}^i \, x^{\alpha}) (e_{\beta}^j \, y^{\beta}).\,

Here \alpha and \beta range over tangent-space coordinates, while i and j range over Minkowski coordinates. The tetrad field e_{\alpha}^i(\mathbf{x}) defines a metric tensor field via the pullback g_{\alpha\beta}(\mathbf{x}) = \eta_{ij} \, e_{\alpha}^i(\mathbf{x}) \, e_{\beta}^j(\mathbf{x}).

## Constructions

A (pseudo-)Riemannian metric is defined over M as the pullback of η by e. To put it in other words, if we have two sections of TM, X and Y,

g(X,Y) = η(e(X), e(Y)).

A connection over V is defined as the unique connection A satisfying these two conditions:

• dη(a,b) = η(dAa,b) + η(a,dAb) for all differentiable sections a and b of V (i.e. dAη = 0) where dA is the covariant exterior derivative. This implies that A can be extended to a connection over the SO(p,q) principal bundle.
• dAe = 0. The quantity on the left hand side is called the torsion. This basically states that \nabla defined below is torsion-free. This condition is dropped in the Einstein-Cartan theory, but then we cannot define A uniquely anymore.

This is called the spin connection.

Now that we have specified A, we can use it to define a connection ∇ over TM via the isomorphism e:

e(∇X) = dAe(X) for all differentiable sections X of TM.

Since what we now have here is a SO(p,q) gauge theory, the curvature F defined as \bold{F}\ \stackrel{\mathrm{def}}{=}\ d\bold{A}+\bold{A}\wedge\bold{A} is pointwise gauge covariant. This is simply the Riemann curvature tensor in a different form.

An alternate notation writes the connection form A as ω, the curvature form F as Ω, the canonical vector-valued 1-form e as θ, and the exterior covariant derivative d_A as D.

## The Palatini action

In the tetrad formulation of general relativity, the action, as a functional of the vierbein e and a connection form \omega, with an associated field strength \Omega = D\omega = d\omega + \omega \wedge \omega, over a four-dimensional differentiable manifold M is given by

S\ \stackrel{\mathrm{def}}{=}\ M^2_{pl}\int_M \epsilon_{abcd}( e^{a} \wedge e^{b} \wedge \Omega^{cd}) = M^2_{pl}\int_M d^4x \epsilon^{\mu \nu \rho \sigma} \epsilon_{abcd} e^a_{\mu} e^b_{\nu} R^{cd}_{\rho \sigma}[\omega]
= M^2_{pl}\int |e| d^4 x \frac{1}{2} e^{\mu}_a e^{\nu}_b R^{ab}_{\mu \nu}
= \frac{c^4}{16 \pi G} \int d^4x \sqrt{-g} R[g]

where \Omega_{\mu \nu} ^{ab} = R_{\mu \nu} ^{ab} is the gauge curvature 2-form, \epsilon_{abcd} is the antisymmetric Levi-Civita symbol, and that |e| = \epsilon^{\mu \nu \rho \sigma} \epsilon_{abcd} e^a_{\mu}e^b_{\nu}e^c_{\rho}e^d_{\sigma} is the determinant of e_{\mu}^a. Here we see that the differential form language leads to an equivalent action to that of the normal Einstein–Hilbert action, using the relations |e| = \sqrt{-g} and R^{\lambda \sigma}_{\mu \nu}= e^{\lambda}_a e^{\sigma}_b R^{ab}_{\mu \nu} . Note that in terms of the Planck mass, we set \hbar = c =1, whereas the last term keeps all the SI unit factors.

Note that in the presence of spinor fields, the Palatini action implies that d\omega is nonzero. So there's a non-zero torsion, i.e. that \hat{\omega}^{ab}_{\mu} = \omega^{ab}_{\mu} + K^{a b}_{\mu}. See Einstein-Cartan theory.