World Library  
Flag as Inappropriate
Email this Article

Combinatorial search

 

Combinatorial search

In computer science and artificial intelligence, combinatorial search studies search algorithms for solving instances of problems that are believed to be hard in general, by efficiently exploring the usually large solution space of these instances. Combinatorial search algorithms achieve this efficiency by reducing the effective size of the search space or employing heuristics. Some algorithms are guaranteed to find the optimal solution, while others may only return the best solution found in the part of the state space that was explored.

Classic combinatorial search problems include solving the eight queens puzzle or evaluating moves in games with a large game tree, such as reversi or chess.

A study of computational complexity theory helps to motivate combinatorial search. Combinatorial search algorithms are typically concerned with problems that are NP-hard. Such problems are not believed to be efficiently solvable in general. However, the various approximations of complexity theory suggest that some instances (e.g. "small" instances) of these problems could be efficiently solved. This is indeed the case, and such instances often have important practical ramifications.

Contents

  • Examples 1
  • Lookahead 2
  • See also 3
  • References 4

Examples

Common algorithms for solving combinatorial search problems include:

Lookahead

Lookahead is an important component of combinatorial search, which specifies, roughly, how deeply the graph representing the problem is explored. The need for a specific limit on lookahead comes from the large problem graphs in many applications, such as computer chess and computer Go. A naive breadth-first search of these graphs would quickly consume all the memory of any modern computer. By setting a specific lookahead limit, the algorithm's time can be carefully controlled; its time increases exponentially as the lookahead limit increases.

More sophisticated search techniques such as alpha-beta pruning are able to eliminate entire subtrees of the search tree from consideration. When these techniques are used, lookahead is not a precisely defined quantity, but instead either the maximum depth searched or some type of average.

See also

References

  • Russell and Norvig. Artificial Intelligence: A Modern Approach.
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.