 #jsDisabledContent { display:none; } My Account |  Register |  Help Flag as Inappropriate This article will be permanently flagged as inappropriate and made unaccessible to everyone. Are you certain this article is inappropriate?          Excessive Violence          Sexual Content          Political / Social Email this Article Email Address:

# Fermi–Walker transport

Article Id: WHEBN0003598939
Reproduction Date:

 Title: Fermi–Walker transport Author: World Heritage Encyclopedia Language: English Subject: Collection: Publisher: World Heritage Encyclopedia Publication Date:

### Fermi–Walker transport

Fermi–Walker transport is a process in general relativity used to define a coordinate system or reference frame such that all curvature in the frame is due to the presence of mass/energy density and not to arbitrary spin or rotation of the frame.

## Contents

• Fermi–Walker differentiation 1
• Co-moving coordinate systems 2
• References 4
• Textbooks 5

## Fermi–Walker differentiation

In the theory of Lorentzian manifolds, Fermi–Walker differentiation is a generalization of covariant differentiation. In general relativity, Fermi–Walker derivatives of the spacelike unit vector fields in a frame field, taken with respect to the timelike unit vector field in the frame field, are used to define non-inertial but nonspinning frames, by stipulating that the Fermi–Walker derivatives should vanish. In the special case of inertial frames, the Fermi–Walker derivatives reduce to covariant derivatives.

This is defined for a vector field X along a curve \gamma(s):

\frac{D_F X}{d s}=\frac{DX}{d s} - (X,\frac{DV}{d s}) V + (X,V)\frac{DV}{d s},

where V is four-velocity, D is the covariant derivative in the Riemannian space, and (,) is scalar product. If

\frac{D_F X}{d s}=0,

the vector field X is Fermi–Walker transported along the curve (see Hawking and Ellis, p. 80). Vectors perpendicular to the space of four-velocities in Minkowski spacetime, e.g., polarization vectors, under Fermi–Walker transport experience Thomas precession.

Using the Fermi derivative, the Bargmann–Michel–Telegdi equation for spin precession of electron in an external electromagnetic field can be written as follows:

\frac{D_Fa^{\tau}}{ds} = 2\mu (F^{\tau \lambda} - u^{\tau} u_{\sigma} F^{\sigma \lambda})a_{\lambda},

where a^{\tau} and \mu are polarization four-vector and magnetic moment, u^{\tau} is four-velocity of electron, a^{\tau}a_{\tau} = -u^{\tau}u_{\tau} = -1, u^{\tau} a_{\tau}=0, and F^{\tau \sigma} is electromagnetic field-strength tensor. The right side describes Larmor precession.

## Co-moving coordinate systems

A coordinate system co-moving with the particle can be defined. If we take the unit vector v^{\mu} as defining an axis in the co-moving coordinate system, then any system transforming with proper time is said to be undergoing Fermi Walker transport.