World Library  
Flag as Inappropriate
Email this Article
 

Inborn error of metabolism

Inborn error of metabolism
Classification and external resources
ICD-10 E70-E90
ICD-9-CM 270-279
MedlinePlus 002438
eMedicine emerg/768 article/804757
MeSH D008661

Inborn errors of metabolism form a large class of genetic diseases involving congenital disorders of metabolism. The majority are due to defects of single genes that code for enzymes that facilitate conversion of various substances (substrates) into others (products). In most of the disorders, problems arise due to accumulation of substances which are toxic or interfere with normal function, or to the effects of reduced ability to synthesize essential compounds. Inborn errors of metabolism are now often referred to as congenital metabolic diseases or inherited metabolic diseases.

The term inborn error of metabolism was coined by a British physician, Archibald Garrod (1857–1936), in the early 20th century (1908). He is known for work that prefigured the "one gene-one enzyme" hypothesis, based on his studies on the nature and inheritance of alkaptonuria. His seminal text, Inborn Errors of Metabolism was published in 1923.[1]

Contents

  • Classification 1
  • Signs and symptoms 2
  • Diagnosis 3
  • Treatment 4
  • Epidemiology 5
  • References 6
  • External links 7

Classification

Traditionally the inherited metabolic diseases were classified as disorders of lysosomal storage diseases. In recent decades, hundreds of new inherited disorders of metabolism have been discovered and the categories have proliferated. Following are some of the major classes of congenital metabolic diseases, with prominent examples of each class. Many others do not fall into these categories.

Signs and symptoms

Because of the enormous number of these diseases and wide range of systems affected, nearly every "presenting complaint" to a doctor may have a congenital metabolic disease as a possible cause, especially in childhood. The following are examples of potential manifestations affecting each of the major organ systems: many manifestations may develop

Diagnosis

Dozens of congenital metabolic diseases are now detectable by newborn screening tests, especially the expanded testing using mass spectrometry. This is an increasingly common way for the diagnosis to be made and sometimes results in earlier treatment and a better outcome. There is a revolutionary GC/MS based technology with an integrated analytics system, which has now made it possible to test a newborn for over 100 mmgenetic metabolic disorders.

Because of the multiplicity of conditions, many different diagnostic tests are used for screening. An abnormal result is often followed by a subsequent "definitive test" to confirm the suspected diagnosis.

Common screening tests used in the last sixty years:

Specific diagnostic tests (or focused screening for a small set of disorders):

A 2015 review reported that even with all these diagnostic tests, there are cases when “biochemical testing, gene sequencing, and enzymatic testing can neither confirm nor rule out an IEM, resulting in the need to rely on the patient’s clinical course.” [2]

Treatment

In the middle of the 20th century the principal treatment for some of the amino acid disorders was restriction of dietary protein and all other care was simply management of complications. In the past twenty years, enzyme replacement, gene therapy, and organ transplantation have become available and beneficial for many previously untreatable disorders. Some of the more common or promising therapies are listed:

  • Dietary restriction
  • Dietary supplementation or replacement
  • Vitamins
  • Intermediary metabolites, compounds, or drugs that facilitate or retard specific metabolic pathways
  • Dialysis
  • Enzyme replacement E.g. Acid-alpha glucosidase for Pompe disease
  • Gene therapy
  • Bone marrow or organ transplantation
  • Treatment of symptoms and complications
  • Prenatal diagnosis

Epidemiology

In a study in British Columbia, the overall incidence of the inborn errors of metabolism were estimated to be 40 per 100,000 live births or 1 in 1,400 births,[3] overall representing more than approximately 15% of single gene disorders in the population.[3]

Type of inborn error Incidence
Disease involving amino acids (e.g. PKU), organic acids,
primary lactic acidosis, galactosemia, or a urea cycle disease
24 per 100 000 births[3] 1 in 4,200[3]
Lysosomal storage disease 8 per 100 000 births[3] 1 in 12,500[3]
Peroxisomal disorder ~3 to 4 per 100 000 of births[3] ~1 in 30,000[3]
Respiratory chain-based mitochondrial disease ~3 per 100 000 births[3] 1 in 33,000[3]
Glycogen storage disease 2.3 per 100 000 births[3] 1 in 43,000[3]


References

  1. ^ http://www.esp.org/books/garrod/inborn-errors/facsimile/
  2. ^ Vernon, Hilary (Jun 2015). "Inborn Errors of Metabolism: Advances in Diagnosis and Therapy". JAMA Pediatrics. 
  3. ^ a b c d e f g h i j k l Applegarth DA, Toone JR, Lowry RB (January 2000). "Incidence of inborn errors of metabolism in British Columbia, 1969-1996". Pediatrics 105 (1): e10.  

External links

The National Institutes of Health offers theoffice of rare diseases, home reference, medlineplus andhealth information. The National Human Genome Research Institute hosts an information center, a section forpatients and the public and additionaleducational resources. Support groups can be found atNORD, Genetic Alliance and Orphanet. The genetic education center at the KUMC has many more useful links.

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.