World Library  
Flag as Inappropriate
Email this Article


Clinical data
Trade names Repronex
CAS Registry Number  Y
ATC code G03

Menotropin (also called human menopausal gonadotropin or hMG) is a hormonally active medication for the treatment of fertility disturbances. Frequently the plural is used as the medication is a mixture of gonadotropins. Menotropins are extracted from the urine of postmenopausal women.[1]


  • Description and usage 1
  • List of hMG preparations 2
  • See also 3
  • References 4
  • External links 5

Description and usage

Urine of postmenopausal women reflects the hypergonadotropic state of menopause -levels of follicle stimulating hormone (FSH) and luteinizing hormone (LH) are high - and contain a mixture of these gonadotropins.[2][3][4] Other protein substances may be present, including small amounts of human chorionic gonadotropin (hCG).[1] In 1949 Piero Donini found a relatively simple method to extract gonadotropins from urine of postmenopausal women.[4][5] Menotropins were successfully introduced into clinical use by Bruno Lunenfeld in 1961.[4] While earlier menotropin medications contained FSH and LH at a 1:1 ratio, the recognition that it is FSH that is critical for follicle stimulation has led to development of newer preparations that contain a much higher FSH/LH ratio, Fertinex being an example.[4]

Menotropin preparations are designed for use in selected women where they stimulate the ovaries to mature follicles, thus making them more fertile. They are administered by typically daily injection, intramuscularly or subcutaneously, for about ten days under close supervision to adjust dose and duration of therapy. They can also be used in hypogonadal men to stimulate sperm production.

Human urinary-derived menotropin preparations are exposed to the theoretical risk of infection from menopausal donors of urine. Nevertheless, the failure to irrefutably demonstrate infectivity following intracerebral inoculation with urine from transmissible spongiform encephalopathy(TSE)-infected hosts suggests that the risk associated with products derived from urine is merely theoretical.[6]

Recombinant gonadotropins have to a large degree replaced hMG in fertility treatments. The recombinant process allows for the production of pure FSH or LH not "contaminated" by other proteins that may be present after urinary extraction. While some head-on studies seem not to suggest that "pure FSH" gives better results than hMG.,[7] others claim that recombinant FSH is more efficient and reduces costs.[8] A Cochrane Collaboration analysis did not reveal major differences in clinical outcomes when comparing urinary versus recombinant FSH.[9]

The Practice Committee of the American Society for Reproductive Medicine reported:[10] “Compared with earlier crude animal extracts, modern highly purified urinary and recombinant gonadotropin products have clearly superior quality, specific activity, and performance. There are no confirmed differences in safety, purity, or clinical efficacy among the various available urinary or recombinant gonadotropin products.”

List of hMG preparations

A number of drug companies have and had marketed hMG preparations that include:[11]

  • Humegon (Organon),
  • Menopur (Ferring Pharmaceuticals), 75 IU FSH and 75 IU LH activity
  • Merional (IBSA Institut)
  • Menogon,
  • Metrodin (Serono),
highly purified urinary FSH
  • Repronex (Ferring Pharmaceuticals), 75 IU FSH and 75 IU LH
  • Pergonal (Serono),
Pergonal was the major hMG prior to the arrival of recombinant gonadotropins containing 75 IU FSH and 75 IU LH.
  • HMG Massone, 75 IU FSH and 75 IU LH

See also


  1. ^ a b Van De Weijer, B. H.; Mulders, J. W.; Bos, E. S.; Verhaert, P. D.; Van Den Hooven, H. W. (2003). "Compositional analyses of a human menopausal gonadotrophin preparation extracted from urine (menotropin). Identification of some of its major impurities". Reproductive biomedicine online 7 (5): 547–557.  
  2. ^ Menotropins at the US National Library of Medicine Medical Subject Headings (MeSH)
  3. ^ TheFreeDictionary > Menotropin Citing: Dorland's Medical Dictionary for Health Consumers. 2007
  4. ^ a b c d Lunenfeld B. "Historical perspectives in gonadotropin therapy". Human reproductive Update 2004, 10 (6):453-467.  
  5. ^ Unknown. "Serono goes recombinant". Serono Laboratories, 2011. Retrieved 2013-11-24. 
  6. ^ Reichl H, Balen A, Jansen CA (October 2002). "Prion transmission in blood and urine: what are the implications for recombinant and urinary-derived gonadotrophins?". Hum. Reprod. 17 (10): 2501–8.  
  7. ^ Bagratee, J. S.; Lockwood, G.; López Bernal, A.; Barlow, D. H.; Ledger, W. L. (1998). "Comparison of highly purified FSH (metrodin-high purity) with pergonal for IVF superovulation". Journal of assisted reproduction and genetics 15 (2): 65–69.  
  8. ^ Daya, S.; Ledger, W.; Auray, J. P.; Duru, G.; Silverberg, K.; Wikland, M.; Bouzayen, R.; Howles, C. M.; Beresniak, A. (2001). "Cost-effectiveness modelling of recombinant FSH versus urinary FSH in assisted reproduction techniques in the UK". Human reproduction (Oxford, England) 16 (12): 2563–2569.  
  9. ^ Van Wely, M.; Kwan, I.; Burt, A. L.; Thomas, J.; Vail, A.; Van Der Veen, F.; Al-Inany, H. G. (2011). Van Wely, Madelon, ed. "Recombinant versus urinary gonadotrophin for ovarian stimulation in assisted reproductive technology cycles". The Cochrane Library (2): CD005354.  
  10. ^ Practice Committee Of American Society For Reproductive Medicine, Birmingham (November 2008). "Gonadotropin preparations: past, present, and future perspectives". Fertil. Steril. 90 (5 Suppl): S13–20.  
  11. ^ Fuller, Matthew A.; Martha Sajatovic (2003). Drug Information Handbook for Psychiatry (4 ed.). Lexi-Comp, Inc. p. 711.  

External links

  • "Menotropins" on Yahoo health
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.