World Library  
Flag as Inappropriate
Email this Article

Summary statistics

Article Id: WHEBN0000027587
Reproduction Date:

Title: Summary statistics  
Author: World Heritage Encyclopedia
Language: English
Subject: Sample maximum and minimum, Optimal design, Order of integration, Seven-number summary, Founders of statistics
Collection: Summary Statistics
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Summary statistics

Box plot of the Michelson–Morley experiment, showing several summary statistics.

In descriptive statistics, summary statistics are used to summarize a set of observations, in order to communicate the largest amount of information as simply as possible. Statisticians commonly try to describe the observations in

A common collection of order statistics used as summary statistics are the five-number summary, sometimes extended to a seven-number summary, and the associated box plot.

Entries in an analysis of variance table can also be regarded as summary statistics.[1]

Contents

  • Examples of summary statistics 1
    • Location 1.1
    • Spread 1.2
    • Shape 1.3
    • Dependence 1.4
  • See also 2
  • References 3

Examples of summary statistics

Location

Common measures of location, or central tendency, are the arithmetic mean, median, mode, and interquartile mean.

Spread

Common measures of statistical dispersion are the standard deviation, variance, range, interquartile range, absolute deviation and the distance standard deviation. Measures that assess spread in comparison to the typical size of data values include the coefficient of variation.

The Gini coefficient was originally developed to measure income inequality and is equivalent to one of the L-moments.

A simple summary of a dataset is sometimes given by quoting particular order statistics as approximations to selected percentiles of a distribution.

Shape

Common measures of the shape of a distribution are skewness or kurtosis, while alternatives can be based on L-moments. A different measure is the distance skewness, for which a value of zero implies central symmetry.

Dependence

The common measure of dependence between paired random variables is the Pearson product-moment correlation coefficient, while a common alternative summary statistic is Spearman's rank correlation coefficient. A value of zero for the distance correlation implies independence.

See also

References

  1. ^ Upton, G., Cook, I. (2006). Oxford Dictionary of Statistics, OUP. ISBN 978-0-19-954145-4
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.