World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0000031091
Reproduction Date:

Title: Titanite  
Author: World Heritage Encyclopedia
Language: English
Subject: Keilhauite, Betafite, Titanium, Radiohalo, Closure temperature
Collection: Calcium Minerals, Gemstones, Monoclinic Minerals, Nesosilicates, Titanium Minerals
Publisher: World Heritage Encyclopedia


Titanite (Sphene)
Several titanite on amphibole (image width 2 mm)
Category nesosilicate
(repeating unit)
Strunz classification 9.AG.15
Crystal symmetry Monoclinic prismatic
H-M symbol: (2/m)
Space group: P 21/a
Unit cell a = 7.057 Å, b = 8.707 Å, c = 6.555 Å; β = 113.81°; Z=4
Colour Reddish brown, gray, yellow, green, or red
Crystal habit Flattened wedge-shaped crystals, also massive
Crystal system Monoclinic
Twinning Contact and penetration on {100}, lamellar on {221}
Cleavage Distinct on [110], parting on {221}
Fracture Sub-conchoidal
Mohs scale hardness 5 to 5.5
Lustre Subadamantine tending to slightly resinous
Streak Reddish white
Diaphaneity Translucent to transparent
Specific gravity 3.48 to 3.60
Optical properties Biaxial (+)
Refractive index nα = 1.843 - 1.950 nβ = 1.870 - 2.034 nγ = 1.943 - 2.110
Birefringence δ = 0.100 - 0.160
Pleochroism Strong: X = nearly colorless; Y = yellow to green; Z = red to yellow-orange
2V angle 17 to 40° (measured)
Dispersion r > v strong
Other characteristics Radioactive - may be metamict
References [1][2][3][4]

Titanite, or sphene (from the Greek sphenos (σφηνώ), meaning wedge[4]), is a calcium titanium nesosilicate mineral, CaTiSiO5. Trace impurities of iron and aluminium are typically present. Also commonly present are rare earth metals including cerium and yttrium; calcium may be partly replaced by thorium.[5]


  • Nomenclature 1
  • Physical properties 2
  • Occurrence 3
  • Uses 4
  • References 5


The International Mineralogical Association Commission on New Minerals and Mineral Names (CNMMN) adopted the name titanite and 'discredited' the name sphene[6] as of 1982,[7] although commonly papers and books initially identify the mineral using both names.[8][9] Sphene was the most commonly used name until the IMA decision, although both were well known.[4] Some authorities[10] think it is less confusing as the word is used to describe any chemical or crystal with oxidized titanium such as the rare earth titanate pyrochlores series[11] and many of the minerals with the perovskite structure.[12] The name sphene continues to be publishable in peer-reviewed scientific literature, e.g. a paper by Hayden et al. was published in early 2008 in the journal Contributions to Mineralogy and Petrology.[10] Sphene persists as the informal name for titanite gemstones.

Physical properties

Green titanite crystal cluster from the Tormiq Valley, Haramosh Mountains, Pakistan

Titanite, which is named for its titanium content, occurs as translucent to transparent, reddish brown, gray, yellow, green, or red monoclinic crystals. These crystals are typically sphenoid in habit and are often twinned. Possessing a subadamantine tending to slightly resinous lustre, titanite has a hardness of 5.5 and a weak cleavage. Its specific gravity varies between 3.52 and 3.54. Titanite's refractive index is 1.885-1.990 to 1.915-2.050 with a strong birefringence of 0.105 to 0.135 (biaxial positive) ; under the microscope this leads to a distinctive high relief which combined with the common yellow-brown colour and lozenge-shape cross-section makes the mineral easy to identify. Transparent specimens are noted for their strong trichroism, the three colours presented being dependent on body colour. Owing to the quenching effect of iron, sphene exhibits no fluorescence under ultraviolet light. Some titanite has been found to be metamict, in consequence of structural damage due to radioactive decomposition of the often significant thorium content. When viewed in thin section with a petrographic microscope, pleochroic halos can be observed in minerals surrounding a titanite crystal.


Titanite occurs as a common accessory mineral in intermediate and felsic igneous rocks and associated pegmatites. It also occurs in metamorphic rocks such as gneiss and schists and skarns.[1] Source localities include: Pakistan; Italy; Russia; China; Brazil; Tujetsch, St. Gothard, Switzerland;[4] Madagascar; Tyrol, Austria; Renfrew County, Ontario, Canada; Sanford, Maine, Gouverneur, Diana, Rossie, Fine, Pitcairn, Brewster, New York[4] and California in the USA.


Titanite is a source of titanium dioxide, TiO2, used in pigments.

As a gemstone, titanite is usually some shade of chartreuse and is prized for its exceptional dispersive power (0.051, B to G interval) which exceeds that of diamond.

Titanite can also be used as a U-Pb geochronometer, specifically in metamorphic terranes.


  1. ^ a b Handbook of Mineralogy
  2. ^ Webmineral data
  3. ^ Mindat
  4. ^ a b c d e  
  5. ^ Deer, Howie & Zussman, (1966) , pp17-20 : 'Introduction to the Rock-Forming Minerals', 1966, ISBN 0-582-44210-9
  6. ^  
  7. ^ Hey, M. H. (December 1982). "International Mineralogical Association: Commission on New Minerals and Mineral Names". Mineralogical Magazine 46 (341): 513–514.  
  8. ^ Wenk, Hans-Rudolf; Bulakh, Andrei (May 2004). Minerals: Their Constitution and Origin. New York, NY: Cambridge University Press.  
  9. ^ Nesse, William D. (August 2003). Introduction to Optical Mineralogy. New York, NY: Oxford University Press, USA.  
  10. ^ a b Hayden, L. A.; Watson, E. B.; Wark, D. A. (2008). "A thermobarometer for sphene (titanite)". Contributions to Mineralogy and Petrology 155 (4): 529–540.  
  11. ^ Helean, K.B.; Ushakov, S.V.; Brown, C.E.; Navrotsky, A.; Lian, J.; Ewing, R.C.; Farmer, J.M.; Boatner, L.A. (June 2004). "Journal of Solid State Chemistry". Journal of Solid State Chemistry 177 (6): 1858–1866.  
  12. ^ Freitas, G.F.G.; Nasar, R.S.; Cerqueira, M.; Melo, D.M.A.; Longo, E.; Varela, J.A. (October 2006). "Luminescence in semi-crystalline zirconium titanate doped with lanthanum". Materials Science and Engineering: A 434 (1-2): 19–22.  
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.