World Library  
Flag as Inappropriate
Email this Article

Uranium-234

Article Id: WHEBN0001898583
Reproduction Date:

Title: Uranium-234  
Author: World Heritage Encyclopedia
Language: English
Subject: Uranium-238, Uranium, Plutonium-238, Radioactive waste, Plutonium
Collection: Actinides, Fertile Materials, Isotopes of Uranium
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Uranium-234

Uranium-234
General
Name, symbol Uranium-234,234U
Neutrons 142
Protons 92
Nuclide data
Natural abundance 0.0054%
Half-life 246,000 years
Parent isotopes 238U (alpha, beta, beta)
234Pa (β)
238Pu (α)
Decay products 230Th
Decay mode Decay energy
alpha emission
spontaneous fission

Uranium-234 is an isotope of uranium. In natural uranium and in uranium ore, U-234 occurs as an indirect decay product of uranium-238, but it makes up only 0.0055% (55 parts per million) of the raw uranium because its half-life of just 245,500 years is only about 1/18,000 as long as that of U-238. The primary path of production of U-234 via nuclear decay is as follows: U-238 nuclei emit an alpha particle to become thorium-234 (Th-234). Next, with a short half-life, Th-234 nuclei emit a beta particle to become protactinium-234 (Pa-234). Finally, Pa-234 nuclei emit another beta particle to become U-234 nuclei.

U-234 nuclei decay by alpha emission to thorium-230, except for the tiny fraction (parts per billion) of nuclei which undergo spontaneous fission.

Extraction of rather small amounts of U-234 from natural uranium would be feasible using isotope separation, similar to that used for regular uranium-enrichment. However, there is no real demand in chemistry, physics, or engineering for isolating U-234. Very small pure samples of U-234 can be extracted via the chemical ion-exchange process - from samples of plutonium-238 that have been aged somewhat to allow some decay to U-234 via alpha emission.

Enriched uranium contains more U-234 than natural uranium as a byproduct of the uranium enrichment process aimed at obtaining U-235, which concentrates lighter isotopes even more strongly than it does U-235. The increased percentage of U-234 in enriched natural uranium is acceptable in current nuclear reactors, but (re-enriched) reprocessed uranium might contain even higher fractions of U-234, which is undesirable. This is because U-234 is not fissile, and tends to absorb slow neutrons in a nuclear reactor - becoming U-235.

U-234 has a neutron-capture cross-section of about 100 barns for thermal neutrons, and about 700 barns for its resonance integral - the average over neutrons having various intermediate energies. In a nuclear reactor non-fissile isotopes capture a neutron breeding fissile isotopes. U-234 is converted to U-235 more easily and therefore at a greater rate than U-238 is to Pu-239 (via neptunium-239) because U-238 has a much smaller neutron-capture cross-section of just 2.7 barns.

However, (n, 2n) reactions with fast neutrons also convert small amounts of U-235 to U-234, so that spent nuclear fuel may contain about 0.010% U-234, a much higher fraction than in non-irradiated uranium.[1]

Depleted uranium contains much less U-234 (around 0.001%[2]) which makes the radioactivity of depleted uranium about one-half of that of natural uranium. Natural uranium has an "equilibrium" concentration of U-234 at the point where an equal number of decays of U-238 and U-234 will occur. Depleted uranium also contains less U-235, but in spite of its half-life that is much shorter than the one of U-238, the concentration of U-235 in natural uranium is low enough (about 0.7%) so that the U-235 depletion does not result in a significant reduction in radioactivity.

Lighter:
uranium-233
Uranium-234 is an
isotope of uranium
Heavier:
uranium-235
Decay product of:
plutonium-238 (α)
protactinium-234 (β-)
neptunium-234 (β+)
Decay chain
of uranium-234
Decays to:
thorium-230 (α)

See also

References

  1. ^ http://www.francenuc.org/en_mat/uranium4_e.htm
  2. ^ WHO | Depleted uranium
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.