World Library  
Flag as Inappropriate
Email this Article

Vhdl-ams

Article Id: WHEBN0014453419
Reproduction Date:

Title: Vhdl-ams  
Author: World Heritage Encyclopedia
Language: English
Subject: VHDL, Behavioral modeling in computer-aided design, Electronic circuit simulation, SystemVerilog DPI, Electrical network
Collection: Hardware Description Languages
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Vhdl-ams

VHDL-AMS is a derivative of the hardware description language VHDL (IEEE standard 1076-1993). It includes analog and mixed-signal extensions (AMS) in order to define the behavior of analog and mixed-signal systems (IEEE 1076.1-1999).

The VHDL-AMS standard was created with the intent of enabling designers of analog and mixed signal systems and integrated circuits to create and use modules that encapsulate high-level behavioral descriptions as well as structural descriptions of systems and components.[1]

VHDL-AMS is an industry standard modeling language for mixed signal circuits. It provides both continuous-time and event-driven modeling semantics, and so is suitable for analog, digital, and mixed analog/digital circuits. It is particularly well suited for verification of very complex analog, mixed-signal and radio frequency integrated circuits.

Code example

In VHDL-AMS, a design consists at a minimum of an entity which describes the interface and an architecture which contains the actual implementation. In addition, most designs import library modules. Some designs also contain multiple architectures and configurations.

A simple ideal diode in VHDL-AMS would look something like this:

-- (this is a VHDL comment)

library IEEE;
use IEEE.math_real.all;
use IEEE.electrical_systems.all;

-- this is the entity
entity DIODE is
   generic (iss : current := 1.0e-14;  -- Saturation current
            af  : real    := 1.0;      -- Flicker noise coefficient
            kf  : real    := 0.0);     -- Flicker noise exponent
   port (terminal anode, cathode : electrical);      
end entity DIODE;

architecture IDEAL of DIODE is
  quantity v across i through anode to cathode;
  constant vt : voltage := 0.0258;     -- Thermal voltage at 300 K
begin

  i == iss * (exp(v/vt) - 1.0);

end architecture IDEAL;

References

  1. ^ Christen E., Bakalar K.,"VHDL-AMS-a hardware description language for analog and mixed-signal applications",Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on [see also Circuits and Systems II: Express Briefs, IEEE Transactions on] Volume 46, Issue 10, Oct. 1999, pp. 1263 - 1272.

See also

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.