World Library  
Flag as Inappropriate
Email this Article

Adaptor hypothesis

Article Id: WHEBN0011521413
Reproduction Date:

Title: Adaptor hypothesis  
Author: World Heritage Encyclopedia
Language: English
Subject: Molecular biology, Francis Crick, RNA Tie Club
Publisher: World Heritage Encyclopedia

Adaptor hypothesis

The adaptor hypothesis is part of a scheme to explain how information encoded in DNA is used to specify the amino acid sequence of proteins. It was formulated by Francis Crick in the mid-1950s, together with the central dogma of molecular biology and the sequence hypothesis. It first appeared in an informal publication of the RNA Tie Club in 1955 and was formally published in an article “On Protein Synthesis” in 1958.


The adaptor hypothesis was framed to explain how information could be extracted from a nucleic acid and used to put together a string of amino acids in a specific sequence, that sequence being determined by the nucleotide sequence of the nucleic acid (DNA or RNA) template. He proposed that each amino acid is first attached to its own specific “adaptor” piece of nucleic acid (in an enzyme catalysed reaction). The order of assembly of the amino acids is then determined by a specific recognition between the adaptor and the nucleic acid which is serving as the informational template. In this way the amino acids could be lined up by the template in a specific order. Coupling between adjacent amino acids would then lead to the synthesis of a polypeptide whose sequence is determined by the template nucleic acid.


Crick’s thinking behind this proposal was based on a general consideration of the chemical properties of the two classes of molecule — nucleic acids and proteins. The amino acids are characterised by having a variety of side chains which vary from being hydrophilic to hydrophobic: their individual characters reside in the very different properties these side chains have. By contrast, a nucleic acid is composed of a string of nucleotides whose sequence presents a geometrically defined surface for hydrogen bonding. This makes nucleic acids good at recognising each other, but poor at distinguishing the varied side chains of amino acids. It was this apparent lack of any possibility of specific recognition of amino acid side chains by a nucleotide sequence which led Crick to conclude that amino acids would first become attached to a small nucleic acid — the adaptor — and that this, by base-pairing with the template (presumably as occurs between DNA strands in the double helix), would carry the amino acids to be lined up on the template.


That such adaptors do exist was discovered by Mahlon Hoagland and Paul Zamecnik in 1958. These “soluble RNAs” are now called transfer RNAs and mediate the translation of messenger RNAs on ribosomes according to the rules contained in the genetic code. Crick imagined that his adaptors would be small, perhaps 5-10 nucleotides long. In fact, they are much larger, having a more complex role to play in protein synthesis, and are closer to 100 nucleotides in length.

External links

  • On Protein Synthesis
  • A soluble ribonucleic acid intermediate in protein synthesis
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.