World Library  
Flag as Inappropriate
Email this Article

Adenosine A1 receptor

Article Id: WHEBN0004116762
Reproduction Date:

Title: Adenosine A1 receptor  
Author: World Heritage Encyclopedia
Language: English
Subject: Adenosine, Pre-Bötzinger complex, Basal forebrain, 8-Phenyltheophylline, 8-Cyclopentyl-1,3-dimethylxanthine
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Adenosine A1 receptor

Adenosine A1 receptor
Identifiers
Symbols  ; RDC7
External IDs IUPHAR: ChEMBL: GeneCards:
RNA expression pattern
Orthologs
Species Human Mouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)
RefSeq (protein)
Location (UCSC)
PubMed search

The adenosine A1 receptor[1] is one member of the adenosine receptor group of G protein-coupled receptors with adenosine as endogenous ligand.

Contents

  • Biochemistry 1
  • Signaling 2
  • Mechanism 3
  • Ligands 4
    • Agonists 4.1
    • PAMs 4.2
    • Antagonists 4.3
  • In heart 5
  • In neonatal medicine 6
  • References 7
  • External links 8

Biochemistry

A1 receptors are implicated in sleep promotion by inhibiting wake-promoting cholinergic neurons in the basal forebrain.[2] A1 receptors are also present in smooth muscle throughout the vascular system.[3]

The adenosine A1 receptor has been found to be ubiquitous throughout the entire body.

Signaling

Activation of the adenosine A1 receptor by an agonist causes binding of Gi1/2/3 or Go protein. Binding of Gi1/2/3 causes an inhibition of adenylate cyclase and, therefore, a decrease in the cAMP concentration. An increase of the inositol triphosphate/diacylglycerol concentration is caused by an activation of phospholipase C, whereas the elevated levels of arachidonic acid are mediated by DAG lipase, which cleaves DAG to form arachidonic acid. Several types of potassium channels are activated but N-, P-, and Q-type calcium channels are inhibited.[4]

Mechanism

This receptor has an inhibitory function on most of the tissues in which it rests. In the brain, it slows metabolic activity by a combination of actions. At the neuron's synapse, it reduces synaptic vesicle release.

Ligands

Caffeine, as well as theophylline, has been found to antagonize both A1 and A2A receptors in the brain.

Agonists

PAMs

  • 2‑Amino-3-(4′-chlorobenzoyl)-4-substituted-5-arylethynyl thiophene # 4e[5]

Antagonists

Non-selective
Selective

In heart

The A1 and A2A receptors of endogenous adenosine are believed to play a role in regulating myocardial oxygen consumption and coronary blood flow. Stimulation of the A1 receptor has a myocardial depressant effect by decreasing the conduction of electrical impulses and suppressing pacemaker cell function, resulting in a decrease in heart rate. This makes adenosine a useful medication for treating and diagnosing tachyarrhythmias, or excessively fast heart rates. This effect on the A1 receptor also explains why there is a brief moment of cardiac standstill when adenosine is administered as a rapid IV push during cardiac resuscitation. The rapid infusion causes a momentary myocardial stunning effect.

In normal physiological states, this serves as protective mechanisms. However, in altered cardiac function, such as hypoperfusion caused by hypotension, heart attack or cardiac arrest caused by nonperfusing bradycardias, adenosine has a negative effect on physiological functioning by preventing necessary compensatory increases in heart rate and blood pressure that attempt to maintain cerebral perfusion.

In neonatal medicine

Adenosine antagonists are widely used in neonatal medicine;

Because a reduction in A1 expression appears to prevent hypoxia-induced ventriculomegaly and loss of white matter, the pharmacological blockade of A1 may have clinical utility.

Theophylline and caffeine are nonselective adenosine antagonists that are used to stimulate respiration in premature infants.

However, we are unaware of clinical studies that have examined the incidence of periventricular leukomalacia (PVL) as related to neonatal caffeine use. Caffeine may reduce cerebral blood flow in premature infants, it is presumed by blocking vascular A2 ARs. Thus, it may prove more advantageous to use selective A1 antagonists to help reduce adenosine-induced brain injury.

References

  1. ^ Townsend-Nicholson A, Baker E, Schofield PR, Sutherland GR (1995). "Localization of the adenosine A1 receptor subtype gene (ADORA1) to chromosome 1q32.1". Genomics 26 (2): 423–5.  
  2. ^ Elmenhorst D, Meyer PT, Winz OH, Matusch A, Ermert J, Coenen HH, Basheer R, Haas HL, Zilles K, Bauer A (2007). "Sleep deprivation increases A1 adenosine receptor binding in the human brain: a positron emission tomography study". J. Neurosci. 27 (9): 2410–5.  
  3. ^ Tawfik HE, Schnermann J, Oldenburg PJ, Mustafa SJ (2005). "Role of A1 adenosine receptors in regulation of vascular tone". Am. J. Physiol. Heart Circ. Physiol. 288 (3): H1411–6.  
  4. ^ Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J (December 2001). "International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors". Pharmacol. Rev. 53 (4): 527–52.  
  5. ^ Romagnoli R, Baraldi PG, IJzerman AP, et al. (2014). "Synthesis and Biological Evaluation of Novel Allosteric Enhancers of the A1 Adenosine Receptor Based on 2-Amino-3-(4'-Chlorobenzoyl)-4-Substituted-5-Arylethynyl Thiophene". J. Med. Chem.  
  6. ^ Gottlieb SS, Brater DC, Thomas I, Havranek E, Bourge R, Goldman S, Dyer F, Gomez M, Bennett D, Ticho B, Beckman E, Abraham WT (March 2002). "BG9719 (CVT-124), an A1 adenosine receptor antagonist, protects against the decline in renal function observed with diuretic therapy". Circulation 105 (11): 1348–53.  
  7. ^ Greenberg B, Thomas I, Banish D, Goldman S, Havranek E, Massie BM, Zhu Y, Ticho B, Abraham WT (August 2007). "Effects of multiple oral doses of an A1 adenosine antagonist, BG9928, in patients with heart failure: results of a placebo-controlled, dose-escalation study". Journal of the American College of Cardiology 50 (7): 600–6.  
  8. ^ Givertz MM, Massie BM, Fields TK, Pearson LL, Dittrich HC (October 2007). "The effects of KW-3902, an adenosine A1-receptor antagonist,on diuresis and renal function in patients with acute decompensated heart failure and renal impairment or diuretic resistance". Journal of the American College of Cardiology 50 (16): 1551–60.  
  9. ^ Cotter G, Dittrich HC, Weatherley BD, Bloomfield DM, O'Connor CM, Metra M, Massie BM (October 2008). "The PROTECT pilot study: a randomized, placebo-controlled, dose-finding study of the adenosine A1 receptor antagonist rolofylline in patients with acute heart failure and renal impairment". Journal of Cardiac Failure 14 (8): 631–40.  

External links

  • "1"Adenosine Receptors: A. IUPHAR Database of Receptors and Ion Channels. International Union of Basic and Clinical Pharmacology. 
  • Adenosine A1 Receptor at the US National Library of Medicine Medical Subject Headings (MeSH)
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.