World Library  
Flag as Inappropriate
Email this Article

Antibody-dependent cell-mediated cytotoxicity

Article Id: WHEBN0004355092
Reproduction Date:

Title: Antibody-dependent cell-mediated cytotoxicity  
Author: World Heritage Encyclopedia
Language: English
Subject: Intracellular antibody-mediated degradation, Immune system, Trubion, CD16, Index of immunology articles
Collection: Immune System
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Antibody-dependent cell-mediated cytotoxicity

The antibody-dependent cell-mediated cytotoxicity (ADCC) is a mechanism of cell-mediated immune defense whereby an effector cell of the immune system actively lyses a target cell, whose membrane-surface antigens have been bound by specific antibodies. It is one of the mechanisms through which antibodies, as part of the humoral immune response, can act to limit and contain infection. Classical ADCC is mediated by natural killer (NK) cells; macrophages, neutrophils and eosinophils can also mediate ADCC. For example, eosinophils can kill certain parasitic worms known as helminths through ADCC. ADCC is part of the adaptive immune response due to its dependence on a prior antibody response.

Antibody-dependent cellular cytotoxicity

Contents

  • ADCC by NK cells 1
  • ADCC by eosinophils 2
  • ADCC in vitro 3
  • Monoclonal antibody action against tumors 4
  • References 5
  • Further reading 6
  • External links 7

ADCC by NK cells

The typical ADCC involves activation of NK cells by antibodies. An NK cell expresses CD16 which is an Fc receptor. This receptor recognizes, and binds to, the Fc portion of an antibody, such as IgG, which has bound to the surface of a pathogen-infected target cell. The most common Fc receptor on the surface of an NK cell is called CD16 or FcγRIII. Once the Fc receptor binds to the Fc region of IgG, the Natural Killer cell releases cytokines such as IFN-γ

ADCC by eosinophils

Large parasites like helminths are too big to be engulfed and killed by phagocytosis. They also have an external structure or integument that is resistant to attack by substances released by neutrophils and macrophages. After IgE coat these parasites, the Fc receptor (FceRI) of an eosinophil will then recognize IgE. Subsequently, interaction between FceRI and the Fc portion of helminth-bound IgE signals the eosinophil to degranulate.

ADCC in vitro

Several laboratory methods exist for determining the efficacy of antibodies or effector cells in eliciting ADCC. Among these methods include chromium-51 [Cr51] release assay, europium [Eu] release assay, and sulfur-35 [S35] release assay. Usually, a labelled target cell line expressing a certain surface-exposed antigen is incubated with antibody specific for that antigen. After washing, effector cells expressing Fc receptor CD16 are co-incubated with the antibody-labelled target cells. Target cell lysis is subsequently measured by release of intracellular label by a scintillation counter or spectrophotometry.

A common challenge faced by ADCC assays is high background signaling due to cellular "leakiness". While both Cr51 and Eu-based assays face this challenge, S35-containing methionine and cysteine pre-incubated with target cells leads to incorporation of radio-labelled molecules into newly translated peptides.

The coupled bioluminescent method aCella TOX is now in widespread use for ADCC and other cytotoxicity assessments. Since this technique measures the release of enzymes naturally present in the target cells, no labeling step is required and no radioactive agents are used.

Monoclonal antibody action against tumors

Experiments in mice indicate that ADCC is an important mechanism of action of therapeutic monoclonal antibodies, including trastuzumab and rituximab, against tumors.[1] In the clinic the FcgRIII 158V/F polymorphism interfere with the ability to generate ADCC responses in vitro during trastuzumab treatment.

References

  1. ^ Clynes, RA; Towers, TL; Presta, LG; Ravetch, JV (2000). "Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets". Nat Med 6 (4): 443–6.  

Further reading

  •  
  • Pier GB, Lyczak JB, Wetzler LM (2004). Immunology, Infection, and Immunity. ASM Press.  

External links

  • University of Leicester, Virus Immunopathology Notes
  • Antibody-Dependent Cell Cytotoxicity at the US National Library of Medicine Medical Subject Headings (MeSH)
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.