World Library  
Flag as Inappropriate
Email this Article

Antipodal point

Article Id: WHEBN0000367577
Reproduction Date:

Title: Antipodal point  
Author: World Heritage Encyclopedia
Language: English
Subject: Great-circle distance, Geomagnetic pole, Spherical geometry, List of algorithms, Stereographic projection
Collection: Topology
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Antipodal point

Antipodal points on a circle are 180 degrees apart.

In mathematics, the antipodal point of a point on the surface of a sphere is the point which is diametrically opposite to it — so situated that a line drawn from the one to the other passes through the center of the sphere and forms a true diameter.

This term applies to opposite points on a circle or any n-sphere.

An antipodal point is sometimes called an antipode, a back-formation from the Greek loan word antipodes, which originally meant "opposite the feet."

Contents

  • Theory 1
  • Antipodal pair of points on a convex polygon 2
  • References 3
  • External links 4

Theory

In mathematics, the concept of antipodal points is generalized to spheres of any dimension: two points on the sphere are antipodal if they are opposite through the centre; for example, taking the centre as origin, they are points with related vectors v and −v. On a circle, such points are also called diametrically opposite. In other words, each line through the centre intersects the sphere in two points, one for each ray out from the centre, and these two points are antipodal.

The Borsuk–Ulam theorem is a result from algebraic topology dealing with such pairs of points. It says that any continuous function from Sn to Rn maps some pair of antipodal points in Sn to the same point in Rn. Here, Sn denotes the n-dimensional sphere in (n + 1)-dimensional space (so the "ordinary" sphere is S2 and a circle is S1).

The antipodal map A : SnSn, defined by A(x) = −x, sends every point on the sphere to its antipodal point. It is homotopic to the identity map if n is odd, and its degree is (−1)n+1.

If one wants to consider antipodal points as identified, one passes to projective space (see also projective Hilbert space, for this idea as applied in quantum mechanics).

Antipodal pair of points on a convex polygon

An antipodal pair of a convex polygon is a pair of 2 points admitting 2 infinite parallel lines being tangent to both points included in the antipodal without crossing any other line of the convex polygon.

References

  •  This article incorporates text from a publication now in the public domain

External links

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.