World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0005601182
Reproduction Date:

Title: Autoantibodies  
Author: World Heritage Encyclopedia
Language: English
Subject: Goitre, Sjögren's syndrome, Ocular myasthenia, SnRNP, Enolase, Filaggrin, Extractable nuclear antigens, Autoimmune lymphoproliferative syndrome, Chronic myelomonocytic leukemia, Type I topoisomerase
Publisher: World Heritage Encyclopedia


An autoantibody is an antibody (a type of protein) manufactured by the immune system that is directed against one or more of the individual's own proteins. Many autoimmune diseases, notably lupus erythematosus, are caused by such autoantibodies.


Antibodies are produced by B cells in two ways: (i) randomly, and (ii) in response to a foreign protein or substance within the body. Initially, one B cell produces one specific kind of antibody. In either case, the B cell is allowed to proliferate or is killed off through a process called clonal deletion. Normally, the immune system is able to recognize and ignore the body's own healthy proteins, cells, and tissues, and to not overreact to non-threatening substances in the environment, such as foods. Sometimes, however, the immune system ceases to recognize one or more of the body's normal constituents as "self," leading to production of pathological autoantibodies. These autoantibodies attack the body's own healthy cells, tissues, and/or organs, causing inflammation and damage. It should be noted that autoantibodies may also play a nonpathological role; for instance they may help the body to destroy cancers and to eliminate waste products. The role of autoantibodies in normal immune function is also a subject of scientific research.


The causes of autoantibody production are varied and not well understood. It is thought that some autoantibody production is due to a genetic predisposition combined with an environmental trigger, such as a viral illness or a prolonged exposure to certain toxic chemicals. There is generally not a direct genetic link however. While families may be susceptible to autoimmune conditions, individual family members may have different autoimmune disorders, or may never develop an autoimmune condition. Researchers believe that there may also be a hormonal component as many of the autoimmune conditions are much more prevalent in women of childbearing age.


Template:See The type of autoimmune disorder or disease that occurs and the amount of destruction done to the body depends on which systems or organs are targeted by the autoantibodies, and how strongly. Disorders caused by organ specific autoantibodies, those that primarily target a single organ, such as the thyroid in Graves' disease and Hashimoto's thyroiditis, are often the easiest to diagnose as they frequently present with organ related symptoms. Disorders due to systemic autoantibodies can be much more elusive. Although the associated autoimmune disorders are rare, the signs and symptoms they cause are relatively common. Symptoms may include: arthritis-type joint pain, fatigue, fever, rashes, cold or allergy-type symptoms, weight loss, and muscular weakness. Associated conditions include vasculitis which are inflammation of blood vessels and anemia. Even if they are due to a particular systemic autoimmune condition, the symptoms will vary from person to person, vary over time, vary with organ involvement, and they may taper off or flare unexpectedly. Add to this the fact that a person may have more than one autoantibody, and thus have more than one autoimmune disorder, and/or have an autoimmune disorder without a detectable level of an autoantibody, complicating making a diagnosis.

The diagnosis of disorders associated with systemic autoantibodies starts with a complete medical history and a thorough physical exam. Based on the patient's signs and symptoms, the doctor may request one or more diagnostic studies that will help to identify a specific disease. As a rule, information is required from multiple sources, rather than a single laboratory test to accurately diagnose disorders associated with systemic autoantibodies. Tests may include:

  • blood tests to detect inflammation, autoantibodies, and organ involvement
  • x-rays and other imaging scans to detect changes in bones, joints, and organs
  • biopsies to look for pathologic changes in tissue specimens

Indications for autoantibody tests

Autoantibody tests may be ordered as part of an investigation of chronic progressive arthritis type symptoms and/or unexplained fevers, fatigue, muscle weakness and rashes. The Antinuclear antibody (ANA) test is often ordered first. ANA is a marker of the autoimmune process – it is positive with a variety of different autoimmune diseases but not specific. Consequently, if an ANA test is positive, it is often followed up with other tests associated with arthritis and inflammation, such as a rheumatoid factor (RF), an erythrocyte sedimentation rate (ESR), a C-Reactive Protein (CRP), and/or complement protein|complement levels.

A single autoantibody test is not diagnostic, but may give clues as to whether a particular disorder is likely or unlikely to be present. Each autoantibody result should be considered individually and as part of the group. Some disorders, such as SLE may be more likely if several autoantibodies are present, while others, such as MCTD (mixed connective tissue disease) may be more likely if a single autoantibody, RNP - ribonucleic protein is the only one present. Those who have more than one autoimmune disorder may have several detectable autoantibodies.

Whether a particular autoantibody will be present is both very individual and a matter of statistics. Each will be present in a certain percentage of people who have a particular autoimmune disorder. For instance, up to 80% of those with SLE will have a positive double strand anti-DNA (anti-dsDNA) autoantibody test, but only about 25-30% will have a positive RNP. Some individuals who do have an autoimmune disorder will have negative autoantibody test results, but at a later date – as the disorder progresses - the autoantibodies may develop.

Systemic autoantibody tests are used to:

  • Help diagnose systemic autoimmune disorders.
  • Help determine the degree of organ or system involvement and damage (Along with other tests such as a complete blood count or comprehensive Metabolic Panel)
  • Monitor the course of the disorder and the effectiveness of treatments. There is no prevention or cure for autoimmune disorders at this time. Treatment is used to alleviate symptoms and to help maintain body function.
  • Monitor remissions, flares, and relapses

Antibody Profiling

Antibody Profiling is used for identifying persons from forensic samples. The technology can uniquely identify a person by analyzing the antibodies in body fluids. A unique, individual set of antibodies, called individual specific autoantibodies (ISA) is found in blood, serum, saliva, urine, semen, perspiration, tears, and body tissues, and the antibodies are not affected by illness, medication, or food/drug intake. An unskilled technician using inexpensive equipment can complete a test in a couple of hours.[1]

List of some autoantibodies and commonly associated diseases

Note: the sensitivity and specificity of various autoantibodies for a particular disease is different for different diseases.

Autoantibody vs. Condition
Antinuclear antibodies Anti-SSA/Ro autoantibodies ribonucleoproteins systemic lupus erythematosus, neonatal heart block, primary Sjögren's syndrome
Anti-La/SS-B autoantibodies Primary Sjögren's syndrome
Anti-centromere antibodies centromere CREST syndrome
Anti-neuronal nuclear antibody-2 Ri opsoclonus
Anti-dsDNA double-stranded DNA SLE
Anti-Jo1 histidine-tRNA ligase inflammatory myopathy
Anti-RNP Ribonucleoprotein Mixed Connective Tissue Disease
Anti-Smith snRNP core proteins SLE
Anti-topoisomerase antibodies Type I topoisomerase systemic sclerosis (anti-Scl-70 antibodies)
Anti-histone antibodies histones SLE and Drug-induced LE[2]
Anti-p62 antibodies[3] nucleoporin 62 primary biliary cirrhosis[3][4][5]
Anti-sp100 antibodies [4] Sp100 nuclear antigen
Anti-glycoprotein-210 antibodies[5] nucleoporin 210kDa
Anti-transglutaminase antibodies Anti-tTG celiac disease
Anti-eTG dermatitis herpetiformis
Anti-ganglioside antibodies ganglioside GQ1B Miller-Fisher Syndrome
ganglioside GD3 acute motor axonal neuropathy (AMAN)
ganglioside GM1 multifocal motor neuropathy with conduction block (MMN)
Anti-actin antibodies actin coeliac disease anti-actin antibodies correlated with the level of intestinal damage [6][7]
anti-CCP cyclic citrullinated protein rheumatoid arthritis
Liver kidney microsomal type 1 antibody autoimmune hepatitis.[8]
Lupus anticoagulant Anti-thrombin antibodies thrombin systemic lupus erythematosus
phospholipid antiphospholipid syndrome
Anti-neutrophil cytoplasmic antibody c-ANCA proteins in neutrophil cytoplasm Wegener's granulomatosis
p-ANCA neutrophil perinuclear microscopic polyangiitis, Churg-Strauss syndrome, systemic vasculitides (non-specific)
Rheumatoid factor IgG Rheumatoid arthritis
Anti-smooth muscle antibody smooth muscle chronic autoimmune hepatitis
Anti-mitochondrial antibody mitochondria primary biliary cirrhosis[9]
Anti-SRP signal recognition particle polymyositis[10]
exosome complex scleromyositis
nicotinic acetylcholine receptor myasthenia gravis
muscle-specific kinase (MUSK) myasthenia gravis
Anti-VGCC voltage-gated calcium channel (P/Q-type) Lambert-Eaton myasthenic syndrome
thyroid peroxidase (microsomal) Hashimoto's thyroiditis
TSH receptor Graves' disease
HuTemplate:Dn paraneoplastic cerebellar syndrome
Yo (cerebellar Purkinje Cells) paraneoplastic cerebellar syndrome
amphiphysin Stiff person syndrome, paraneoplastic cerebellar syndrome
Anti-VGKC voltage-gated potassium channel (VGKC) limbic encephalitis, Isaac's Syndrome (autoimmune neuromyotonia)
basal ganglia neurons Sydenham's chorea, paediatric autoimmune neuropsychiatric disease associated with Streptococcus (PANDAS)
N-methyl-D-aspartate receptor (NMDA) encephalitis
glutamic acid decarboxylase (GAD) diabetes mellitus type 1, stiff person syndrome
aquaporin-4 neuromyelitis optica (Devic's syndrome)

See also


External links

  • Autoimmunity – an Introduction Industrial Learning Unit on Chemgaroo
  • Autoimmune Diagnostics Industrial Learning Unit on Chemgaroo
  • Medical Subject Headings (MeSH)
  • Detection of autoantibodies with self-assembling radiolabeled antigen tetramers (a protocol)
  • Antibody Sensors

Template:Immune system

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.