World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0012778506
Reproduction Date:

Title: Bronchoscopy  
Author: World Heritage Encyclopedia
Language: English
Subject: Lung cancer, Ventilator-associated pneumonia, Solitary pulmonary nodule, History of tracheal intubation, Tracheal intubation
Publisher: World Heritage Encyclopedia


A physician performing bronchoscopy.
ICD-9-CM 33.21-33.23
OPS-301 code: 1-62

Bronchoscopy is an endoscopic technique of visualizing the inside of the airways for diagnostic and therapeutic purposes. An instrument (bronchoscope) is inserted into the airways, usually through the nose or mouth, or occasionally through a tracheostomy. This allows the practitioner to examine the patient's airways for abnormalities such as foreign bodies, bleeding, tumors, or inflammation. Specimens may be taken from inside the lungs. The construction of bronchoscopes ranges from rigid metal tubes with attached lighting devices to flexible optical fiber instruments with realtime video equipment.


A German, Gustav Killian, performed the first bronchoscopy in 1897. Killian used rigid bronchoscope to remove a pork bone. The procedure was done in an awake patient using topical cocaine as a local anesthetic. From this time until the 1970s, rigid bronchoscopes were used exclusively.

An American, Chevalier Jackson, refined the rigid bronchoscope in the 1920s, using this rigid tube to visually inspect the trachea and mainstem bronchi. The British laryngologist Victor Negus, who worked with Jackson, improved the design of his endoscopes, including what came to be called the 'Negus bronchoscope'.

A Japanese, Shigeto Ikeda, invented the flexible bronchoscope in 1966. The flexible scope initially employed fiberoptic bundles requiring an external light source for illumination. These scopes had outside diameters of approximately 5 mm to 6 mm, with an ability to flex 180 degrees and to extend 120 degrees, allowing entry into lobar and segmental bronchi. More recently, fiberoptic scopes have been replaced by bronchoscopes with a charge coupled device (CCD) video chip located at their distal extremity.



Rigid bronchoscopy.

Rigid bronchoscopy is used for retrieving foreign objects.[1] Massive hemoptysis, defined as loss of >600 mL of blood in 24 hours, is a medical emergency and should be addressed with initiation of intravenous fluids and examination with rigid bronchoscopy. The larger lumen of the rigid bronchoscope versus the narrow lumen of the flexible bronchoscope allows for therapeutic approaches such as electrocautery to help control the bleeding. Rigid bronchoscopy is preferred for recovery of foreign body aspiration because it allows protection of the airway and controlling the foreign body during recovery.[2]

Flexible (fiberoptic)

A flexible bronchoscope is longer and thinner than a rigid bronchoscope. It contains a fiberoptic system that transmits an image from the tip of the instrument to an eyepiece or video camera at the opposite end. Using Bowden cables connected to a lever at the hand piece, the tip of the instrument can be oriented, allowing the practitioner to navigate the instrument into individual lobe or segment bronchi. Most flexible bronchoscopes also include a channel for suctioning or instrumentation, but these are significantly smaller than those in a rigid bronchoscope.

Flexible bronchoscopy causes less discomfort for the patient than rigid bronchoscopy and the procedure can be performed easily and safely under moderate sedation. It is the technique of choice nowadays for most bronchoscopic procedures.



Diagram of a bronchoscopy being performed


  • To remove secretions, blood, or foreign objects lodged in the airway
  • Laser resection of tumors or benign tracheal and bronchial strictures
  • Stent insertion to palliate extrinsic compression of the tracheobronchial lumen from either malignant or benign disease processes
  • Bronchoscopy is also employed in percutaneous tracheostomy
  • Tracheal intubation of patients with difficult airways is often performed using a flexible bronchoscope


Video of a bronchoscopy of the right bronchial tree

Bronchoscopy can be performed in a special room designated for such procedures, operating room, intensive care unit, or other location with resources for the management of airway emergencies. The patient will often be given antianxiety and antisecretory medications (to prevent oral secretions from obstructing the view), generally atropine, and sometimes an analgesic such as morphine. During the procedure, sedatives such as midazolam or propofol may be used. A local anesthetic is often given to anesthetise the mucous membranes of the pharynx, larynx, and trachea. The patient is monitored during the procedure with periodic blood pressure checks, continuous ECG monitoring of the heart, and pulse oximetry.

A flexible bronchoscope is inserted with the patient in a sitting or supine position. Once the bronchoscope is inserted into the upper airway, the vocal cords are inspected. The instrument is advanced to the trachea and further down into the bronchial system and each area is inspected as the bronchoscope passes. If an abnormality is discovered, it may be sampled, using a brush, a needle, or forceps. Specimen of lung tissue (transbronchial biopsy) may be sampled using a real-time x-ray (fluoroscopy) or an electromagnetic tracking system. Flexible bronchoscopy can also be performed on intubated patients, such as patients in intensive care. In this case, the instrument is inserted through an adapter connected to the tracheal tube.

Rigid bronchoscopy is performed under general anesthesia. Rigid bronchoscopes are too large to allow parallel placement of other devices in the trachea; therefore the anesthesia apparatus is connected to the bronchoscope and the patient is ventilated through the bronchoscope.


Although most patients tolerate bronchoscopy well, a brief period of observation is required after the procedure. Most complications occur early and are readily apparent at the time of the procedure. The patient is assessed for respiratory difficulty (stridor and dyspnea resulting from laryngeal edema, laryngospasm, or bronchospasm). Monitoring continues until the effects of sedative drugs wear off and gag reflex has returned. If the patient has had a transbronchial biopsy, doctors may take a chest x-ray to rule out any air leakage in the lungs (pneumothorax) after the procedure. The patient will be hospitalized if there occurs any bleeding, air leakage (pneumothorax), or respiratory distress.

Complications and risks

Besides the risks associated with the drug used, there are also specific risks of the procedure. Although a rigid bronchoscope can scratch or tear airways or damage the vocal cords, the risk of bronchoscopy is limited. Complications from fiberoptic bronchoscopy remain extremely low. Common complications include excessive bleeding following biopsy. A lung biopsy also may cause leakage of air, called pneumothorax. Pneumothorax occurs in less than 1% of lung biopsy cases. Laryngospasm is a rare complication but may sometimes require tracheal intubation. Patients with tumors or significant bleeding may experience increased difficulty breathing after a bronchoscopic procedure, sometimes due to swelling of the mucous membranes of the airways.

See also


  1. ^ Rick Daniels (15 June 2009). Delmar's Guide to Laboratory and Diagnostic Tests. Cengage Learning. pp. 163–.  
  2. ^ Rosbe KW, Burke K. Chapter 39. Foreign Bodies. In: Lalwani AK, ed. CURRENT Diagnosis & Treatment in Otolaryngology—Head & Neck Surgery. 3rd ed. New York: McGraw-Hill; 2012. Accessed July 16, 2012.
  • Medical Encyclopedia - Bronchoscopy
  • Aaron's Tracheostomy Page - Bronchoscopy
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.