World Library  
Flag as Inappropriate
Email this Article

Cardiac arrest

Article Id: WHEBN0000060575
Reproduction Date:

Title: Cardiac arrest  
Author: World Heritage Encyclopedia
Language: English
Subject: Cardiac arrhythmia, Cardiopulmonary resuscitation, Myocardial infarction, Clinical death, Cardiology
Publisher: World Heritage Encyclopedia

Cardiac arrest

Cardiac arrest
Classification and external resources
CPR being administered during a simulation of cardiac arrest.
ICD-10 I46
ICD-9 427.5
DiseasesDB 2095
MeSH D006323

Cardiac arrest, also known as cardiopulmonary arrest or circulatory arrest, is a sudden stop in effective blood circulation due to failure of the heart to contract effectively or at all.[1] Medical personnel may refer to an unexpected cardiac arrest as a sudden cardiac arrest (SCA).

A cardiac arrest is different from (but may be caused by) a heart attack, where blood flow to the muscle of the heart is impaired.[2] It is different from congestive heart failure, where circulation is substandard, but the heart is still pumping sufficient blood to sustain life.

Arrested blood circulation prevents delivery of oxygen and glucose to the body. Lack of oxygen and glucose to the brain causes loss of consciousness, which then results in abnormal or absent breathing. Brain injury is likely to happen if cardiac arrest goes untreated for more than five minutes.[3][4][5] For the best chance of survival and neurological recovery, immediate and decisive treatment is imperative.[6]

Cardiac arrest is a medical emergency that, in certain situations, is potentially reversible if treated early. Unexpected cardiac arrest can lead to death within minutes: this is called sudden cardiac death (SCD).[1] The treatment for cardiac arrest is immediate defibrillation if a "shockable" rhythm is present, while cardiopulmonary resuscitation (CPR) is used to provide circulatory support and/or to induce a "shockable" rhythm.


Clinicians classify cardiac arrest into "shockable" versus "non–shockable", as determined by the ECG rhythm. This refers to whether a particular class of cardiac dysrhythmia is treatable using defibrillation.[7] The two "shockable" rhythms are ventricular fibrillation and pulseless ventricular tachycardia while the two "non–shockable" rhythms are asystole and pulseless electrical activity.[8]

Signs and symptoms

Cardiac arrest is sometimes preceded by certain symptoms such as fainting, fatigue, black outs, dizziness, chest pain, shortness of breath, weakness, and vomiting. Though the arrest may also occur with no warning.

When the arrest occurs, the most obvious sign of its occurrence will be the lack of a palpable pulse in the person experiencing it (since the heart has ceased to contract, the usual indications of its contraction such a pulse will no longer be detectable). Certain types of prompt intervention can often reverse a cardiac arrest, but without such intervention the event will almost always lead to death.[1] In certain cases, it is an expected outcome of a serious illness where death is expected.[9]

Also, as a result of inadequate cerebral perfusion, the patient will quickly become unconscious and will have stopped breathing. The main diagnostic criterion to diagnose a cardiac arrest (as opposed to respiratory arrest which shares many of the same features) is lack of circulation; however, there are a number of ways of determining this. Near death experiences are reported by 10-20% of people who survived cardiac arrest.[10]


Coronary heart disease is the leading cause of sudden cardiac arrest. Many other cardiac and non-cardiac conditions also increase one's risk.

Coronary artery disease

Approximately 60–70% of SCD is related to coronary heart disease.[11][12] Among adults, ischemic heart disease is the predominant cause of arrest[13] with 30% of people at autopsy showing signs of recent myocardial infarction.

Non-ischemic heart disease

A number of other cardiac abnormalities can increase the risk of SCD including: cardiomyopathy, cardiac rhythm disturbances, hypertensive heart disease,[11] congestive heart failure.[14]

In a group of military recruits aged 18–35, cardiac anomalies accounted for 51% of cases of SCD, while in 35% of cases the cause remained unknown. Underlying pathology included: coronary artery abnormalities (61%), myocarditis (20%), and hypertrophic cardiomyopathy (13%).[15] Congestive heart failure increases the risk of SCD by 5 fold.[14]

Many additional conduction abnormalities exist that place one at higher risk for cardiac arrest. For instance, long QT syndrome, a condition often mentioned in young people's deaths, occurs in 1/5000-1/7000 newborns and is estimated to be responsible 3000 deaths each year compared to the approximately 300000[16] cardiac arrests seen by emergency services. These conditions are a fraction of the overall deaths related to cardiac arrest, but represent conditions which may be detected prior to arrest, which may be treatable.


About 35% of SCDs are not caused by a heart condition. The most common non-cardiac causes are trauma, bleeding (such as gastrointestinal bleeding, aortic rupture, or intracranial hemorrhage), overdose, drowning and pulmonary embolism.[17] Cardiac arrest can also be caused by poisoning (for example, by the stings of certain jellyfish).

Risk factors

The risk factors for SCD are similar to those of coronary heart disease, and include smoking, lack of physical exercise, obesity and diabetes, as well as family history.[18]

Hs and Ts

"Hs and Ts" is the name for a mnemonic used to aid in remembering the possible treatable or reversible causes of cardiac arrest.[7][19]



Cardiac arrest is synonymous with clinical death.

A cardiac arrest is usually diagnosed clinically by the absence of a pulse. In many cases lack of carotid pulse is the gold standard for diagnosing cardiac arrest, but lack of a pulse (particularly in the peripheral pulses) may result from other conditions (e.g. shock), or simply an error on the part of the rescuer. Studies have shown that rescuers often make a mistake when checking the carotid pulse in an emergency, whether they are healthcare professionals[20] or lay persons.[21]

Owing to the inaccuracy in this method of diagnosis, some bodies such as the European Resuscitation Council (ERC) have de-emphasised its importance. The Resuscitation Council (UK), in line with the ERC's recommendations and those of the American Heart Association,[19] have suggested that the technique should be used only by healthcare professionals with specific training and expertise, and even then that it should be viewed in conjunction with other indicators such as agonal respiration.[7]

Various other methods for detecting circulation have been proposed. Guidelines following the 2000 International Liaison Committee on Resuscitation (ILCOR) recommendations were for rescuers to look for "signs of circulation", but not specifically the pulse.[19] These signs included coughing, gasping, colour, twitching and movement.[22] However, in face of evidence that these guidelines were ineffective, the current recommendation of ILCOR is that cardiac arrest should be diagnosed in all casualties who are unconscious and not breathing normally.[19]


With positive outcomes following cardiac arrest unlikely, an effort has been spent in finding effective strategies to prevent cardiac arrest. With the prime causes of cardiac arrest being ischemic heart disease, efforts to promote a healthy diet, exercise, and smoking cessation are important. For people at risk of heart disease, measures such as blood pressure control, cholesterol lowering, and other medico-therapeutic interventions are used.

Code teams

In medical parlance, cardiac arrest is referred to as a "code" or a "crash". This typically refers to "code blue" on the hospital emergency codes. A dramatic drop in vital sign measurements is referred to as "coding" or "crashing", though coding is usually used when it results in cardiac arrest, while crashing might not. Treatment for cardiac arrest is sometimes referred to as "calling a code".

Extensive research has shown that patients in general wards often deteriorate for several hours or even days before a cardiac arrest occurs.[7][23] This has been attributed to a lack of knowledge and skill amongst ward based staff, in particular a failure to carry out measurement of the respiratory rate, which is often the major predictor of a deterioration[7] and can often change up to 48 hours prior to a cardiac arrest. In response to this, many hospitals now have increased training for ward based staff. A number of "early warning" systems also exist which aim to quantify the risk which patients are at of deterioration based on their vital signs and thus provide a guide to staff. In addition, specialist staff are being utilised more effectively in order to augment the work already being done at ward level. These include:

  • Crash teams (or code teams) - These are designated staff members who have particular expertise in resuscitation, who are called to the scene of all arrests within the hospital. This usually involves a specialized cart of equipment (including defibrillator) and drugs called a "crash cart" or "crash trolley".
  • Medical emergency teams - These teams respond to all emergencies, with the aim of treating the patient in the acute phase of their illness in order to prevent a cardiac arrest.
  • Critical care outreach - As well as providing the services of the other two types of team, these teams are also responsible for educating non-specialist staff. In addition, they help to facilitate transfers between intensive care/high dependency units and the general hospital wards. This is particularly important, as many studies have shown that a significant percentage of patients discharged from critical care environments quickly deteriorate and are re-admitted - the outreach team offers support to ward staff to prevent this from happening.

In some medical facilities, the resuscitation team may purposely respond slowly to a patient in cardiac arrest, a practice known as slow code, or may fake the response altogether for the sake of the patient's family, a practice known as show code.[24] This is generally done for patients for whom performing CPR will have no medical benefit.[25] Such practices are ethically controversial,[26] and are banned in some jurisdictions.

Implantable cardioverter defibrillators

A technologically based intervention to prevent further cardiac arrest episodes is the use of an implantable cardioverter-defibrillator (ICD). This device is implanted in the patient and acts as an instant defibrillator in the event of arrhythmia. Note that standalone ICDs do not have any pacemaker functions, but they can be combined with a pacemaker, and modern versions also have advanced features such as anti-tachycardic pacing as well as synchronized cardioversion. A recent study by Birnie et al. at the University of Ottawa Heart Institute has demonstrated that ICDs are underused in both the United States and Canada.[27] An accompanying editorial by Simpson explores some of the economic, geographic, social and political reasons for this.[28] Patients who are most likely to benefit from the placement of an ICD are those with severe ischemic cardiomyopathy (with systolic ejection fractions less than 30%) as demonstrated by the MADIT-II trial.[29]


Sudden cardiac arrest may be treated via attempts at resuscitation. This is usually carried out based upon basic life support (BLS) / advanced cardiac life support (ACLS),[19] pediatric advanced life support (PALS)[30] or neonatal resuscitation program (NRP) guidelines.

Cardiopulmonary resuscitation

Cardiopulmonary resuscitation (CPR) is an important part of the management of cardiac arrest. It is recommended that it be started as soon as possible and interrupted as little as possible. The component of CPR which seems to make the greatest difference in most cases is the chest compressions. Correctly performed bystander CPR has been shown to increase survival; however, it is performed in less than 30% of out of hospital arrests as of 2007.[31] If high quality CPR has not resulted in return of spontaneous circulation and the person's heart rhythm is in asystole discontinuing CPR and pronouncing the person death is reasonable after 20 minutes.[32] Exceptions to this include those with hypothermia or who have drowned.[32] Longer durations of CPR may be reasonable in those who have cardiac arrest while in hospital.[33] Tracheal intubation has not been found to improve survival rates in cardiac arrest[31] and in the prehospital environment may worsen it.[34] A 2009 study found that assisted ventilation may worsen outcomes over placement of an oral airway with passive oxygen delivery.[35] CPR which involves only chest compressions results in the same outcomes as standard CPR for those who have gone into cardiac arrest due to heart issues.[36] A 2013 review found some evidence that mechanical chest compressions (as performed by a machine) are better than manual chest compressions[37] while a 2011 and 2012 review considered the evidence insufficient.[38][39] It is unclear if a few minutes of CPR before defibrillation results in different outcomes than immediate defibrillation.[40]


Shockable and non–shockable causes of cardiac arrest is based on the presence or absence of ventricular fibrillation or pulseless ventricular tachycardia. The shockable rhythms are treated with CPR and defibrillation.

In addition, there is increasing use of public access defibrillation. This involves placing automated external defibrillators in public places, and training staff in these areas how to use them. This allows defibrillation to take place prior to the arrival of emergency services, and has been shown to lead to increased chances of survival. Some defibrillators even provide feedback on the quality of CPR compressions, encouraging the lay rescuer to press the patient's chest hard enough to circulate blood.[41] In addition, it has been shown that those who have arrests in remote locations have worse outcomes following cardiac arrest.[42]


Medications, while included in guidelines, have been shown not to improve survival to hospital discharge post out of hospital cardiac arrest. This includes the use of epinephrine, atropine, and amiodarone.[43][44] Vasopressin overall does not improve or worsen outcomes but may be of benefit in those with asystole especially if used early.[45]

Epinephrine does appear to improve short term outcomes such as return of spontaneous circulation.[46] Some of the lack of long term benefit may be related to delays in epinephrine use.[47]

The 2010 guidelines, from the American Heart Association has removed its recommendation for using atropine in pulseless electrical activity and asystole due to the lack of evidence for its use.[48] Evidence is insufficient for lidocaine and amiodarone may be considered in those who continue in ventricular tachycardia or ventricular fibrillation despite defibrillation.[49] Thrombolytics when used generally may cause harm but may be of benefit in those with a pulmonary embolism as the cause of arrest.[50]

Therapeutic hypothermia

Cooling a person after cardiac arrest with return of spontaneous circulation (ROSC) but without return of consciousness may or may not improve outcomes.[51][52] This procedure is called therapeutic hypothermia. People are cooled over a 24 hour period, with a target temperature of 32–34 °C (90–93 °F). Death rates in the hypothermia group were initially believed to be 35% lower with generally mild complications.[51][53] A November 2013 trial, however, called this idea into question with findings that a temperature of 36 °C (97 °F) results in the same outcomes as 33 °C (91 °F).[52] And a second trial looking at earlier versus later cooling found no difference.[54]

Do not resuscitate

Some people choose to avoid aggressive measures at the end of life. A do not resuscitate order (DNR) in the form of an advance health care directive makes it clear that in the event of cardiac arrest, the person does not wish to receive cardiopulmonary resuscitation.[55] Other directives may be made to stipulate the desire for intubation in the event of respiratory failure or, if comfort measures are all that are desired, by stipulating that healthcare providers should "allow natural death".[56]

Chain of survival

Several organisations promote the idea of a chain of survival. The chain consists of the following "links":

  • Early recognition - If possible, recognition of illness before the patient develops a cardiac arrest will allow the rescuer to prevent its occurrence. Early recognition that a cardiac arrest has occurred is key to survival - for every minute a patient stays in cardiac arrest, their chances of survival drop by roughly 10%.[7]
  • Early CPR - improves the flow of blood and of oxygen to vital organs - an essential component of treating a cardiac arrest. In particular, by keeping the brain supplied with oxygenated blood, chances of neurological damage are decreased.
  • Early defibrillation - is effective for the management of ventricular fibrillation and pulseless ventricular tachycardia[7]
  • Early advanced care
  • Early post resuscitation care

If one or more links in the chain are missing or delayed, then the chances of survival drop significantly.

These protocols are often initiated by a code blue, which usually denotes impending or acute onset of cardiac arrest or respiratory failure, although in practice, code blue is often called in less life-threatening situations that require immediate attention from a physician.


Resuscitation with extracorporeal membrane oxygenation devices has been attempted with better results for in-hospital cardiac arrest (29% survival) than out of hospital cardiac arrest (4% survival) in populations selected to benefit most.[57] Cardiac catheterization in those who have survived an out of hospital cardiac arrest appears to improve outcomes.[58]

The precordial thump may be considered in those with witnessed, monitored, unstable ventricular tachycardia (including pulseless VT) if a defibrillator is not immediately ready for use, but it should not delay CPR and shock delivery or be used in those with unwitnessed out of hospital arrest.[59]


The survival rate to hospital discharge of people who receive initial emergency care by ambulance is 2%, with 15% experiencing return of spontaneous circulation.[60] However, with defibrillation within 3–5 minutes, the survival rate increases to 30%.[61][62] Since mortality in case of out-of-hospital cardiac arrest is high, programs were developed to improve survival rate. Although mortality in case of ventricular fibrillation is high, rapid intervention with a defibrillator increases survival rate.[13][63]

A 1997 review into outcomes following in-hospital cardiac arrest found a survival to discharge of 14% although the range between different studies was 0-28%.[64] In those over the age of 70 who have a cardiac arrest while in hospital, survival to hospital discharge is less than 20%.[65] How well these individuals are able to manage after leaving hospital is not clear.[65]

Survival is mostly related to the cause of the arrest (see above). In particular, people who have suffered myocardial infarction due to a blood clot in the left coronary artery has a lower chance of survival.

A study of survival rates from out of hospital cardiac arrest found that 14.6% of those who had received resuscitation by ambulance staff survived as far as admission to hospital. Of these, 59% died during admission, half of these within the first 24 hours, while 46% survived until discharge from hospital. This gives us an overall survival following cardiac arrest of 6.8%. Of these 89% had normal brain function or mild neurological disability, 8.5% had moderate impairment, and 2% suffered major neurological disability. Of those who were discharged from hospital, 70% were still alive 4 years later.[66]


Based on death certificates sudden cardiac death accounts for about 15% of all death in Western countries[11] (330,000 per year in the United States).[31] The lifetime risk is three times greater in men (12.3%) than women (4.2%) based on analysis of the Framingham Heart Study.[67] However this gender difference disappeared beyond 85 years of age.[11]


  1. ^ a b c Jameson, J. N. St C.; Dennis L. Kasper; Harrison, Tinsley Randolph; Braunwald, Eugene; Fauci, Anthony S.; Hauser, Stephen L; Longo, Dan L. (2005). Harrison's principles of internal medicine. New York: McGraw-Hill Medical Publishing Division.  
  2. ^ Mallinson, T (2010). "Myocardial infarction". Focus on First Aid (15): 15. Retrieved 2010-06-08. 
  3. ^ Safar P (December 1986). "Cerebral resuscitation after cardiac arrest: a review". Circulation 74 (6 Pt 2): IV138–53.  
  4. ^ Holzer M, Behringer W (April 2005). "Therapeutic hypothermia after cardiac arrest". Current Opinion in Anesthesiology 18 (2): 163–8.  
  5. ^ Safar P, Xiao F, Radovsky A, et al. (January 1996). "Improved cerebral resuscitation from cardiac arrest in dogs with mild hypothermia plus blood flow promotion". Stroke 27 (1): 105–13.  
  6. ^ Rippe, James M.; Irwin, Richard S. (2003). Irwin and Rippe's intensive care medicine. Hagerstwon, MD: Lippincott Williams & Wilkins.  
  7. ^ a b c d e f g "Resuscitation Council (UK) Guidelines 2005". 
  8. ^ Jasmeet Soar, Gavin D. Perkins, Jerry Nolan., ed. (2012). ABC of resuscitation (6th ed. ed.). Chichester, West Sussex: Wiley-Blackwell. p. 43.  
  9. ^ "Mount Sinai - Cardiac arrest". 
  10. ^ Parnia, S; Spearpoint, K; Fenwick, PB (August 2007). "Near death experiences, cognitive function and psychological outcomes of surviving cardiac arrest.". Resuscitation 74 (2): 215–21.  
  11. ^ a b c d Zheng ZJ, Croft JB, Giles WH, Mensah GA (October 2001). "Sudden cardiac death in the United States, 1989 to 1998". Circulation 104 (18): 2158–63.  
  12. ^ Centers for Disease Control and Prevention (CDC) (February 2002). "State-specific mortality from sudden cardiac death--United States, 1999". MMWR Morb. Mortal. Wkly. Rep. 51 (6): 123–6.  
  13. ^ a b Eisenberg MS, Mengert TJ (April 2001). "Cardiac resuscitation". N. Engl. J. Med. 344 (17): 1304–13.  
  14. ^ a b Kannel WB, Wilson PW, D'Agostino RB, Cobb J (August 1998). "Sudden coronary death in women". Am. Heart J. 136 (2): 205–12.  
  15. ^ Eckart RE, Scoville SL, Campbell CL, et al. (December 2004). "Sudden death in young adults: a 25-year review of autopsies in military recruits". Annals of Internal Medicine 141 (11): 829–34.  
  16. ^ Sudden Cardiac Death
  17. ^ Kuisma M, Alaspää A (July 1997). "Out-of-hospital cardiac arrests of non-cardiac origin. Epidemiology and outcome". Eur. Heart J. 18 (7): 1122–8.  
  18. ^ Friedlander Y, Siscovick DS, Weinmann S, et al. (January 1998). "Family history as a risk factor for primary cardiac arrest". Circulation 97 (2): 155–60.  
  19. ^ a b c d e ECC Committee, Subcommittees and Task Forces of the American Heart Association (December 2005). "2005 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care". Circulation 112 (24 Suppl): IV1–203.  
  20. ^ Ochoa FJ, Ramalle-Gómara E, Carpintero JM, García A, Saralegui I (June 1998). "Competence of health professionals to check the carotid pulse". Resuscitation 37 (3): 173–5.  
  21. ^ Bahr J, Klingler H, Panzer W, Rode H, Kettler D (August 1997). "Skills of lay people in checking the carotid pulse". Resuscitation 35 (1): 23–6.  
  22. ^ British Red Cross; St Andrew's Ambulance Association; St John Ambulance (2006). First Aid Manual: The Authorised Manual of St. John Ambulance, St. Andrew's Ambulance Association, and the British Red Cross. Dorling Kindersley Publishers Ltd.  
  23. ^ Kause J, Smith G, Prytherch D, Parr M, Flabouris A, Hillman K (September 2004). "A comparison of antecedents to cardiac arrests, deaths and emergency intensive care admissions in Australia and New Zealand, and the United Kingdom--the ACADEMIA study". Resuscitation 62 (3): 275–82.  
  24. ^ "Slow Codes, Show Codes and Death".  
  25. ^ "Decision-making for the End of Life". Physician Advisory Service.  
  26. ^ DePalma, Judith A.; Miller, Scott; Ozanich, Evelyn; Yancich, Lynne M. (November 1999). "Slow" Code: Perspectives of a Physician and Critical Care Nurse. Critical Care Nursing Quarterly 22 (3) ( 
  27. ^ Birnie, David H; Sambell, Christie; Johansen, Helen; Williams, Katherine; Lemery, Robert; Green, Martin S; Gollob, Michael H; Lee, Douglas S; Tang, Anthony SL (July 2007). "Use of implantable cardioverter defibrillators in Canadian and IS survivors of out-of-hospital cardiac arrest". Canadian Medical Association Journal 177 (1): 41–6.  
  28. ^ Simpson CS (July 2007). "Implantable cardioverter defibrillators work--so why aren't we using them?". CMAJ 177 (1): 49–51.  
  29. ^ Moss AJ, Brown MW, Cannom DS, et al. (October 2005). "Multicenter automatic defibrillator implantation trial-cardiac resynchronization therapy (MADIT-CRT): design and clinical protocol". Ann Noninvasive Electrocardiol 10 (4 Suppl): 34–43.  
  30. ^ American Heart, Association (May 2006). "2005 American Heart Association (AHA) guidelines for cardiopulmonary resuscitation (CPR) and emergency cardiovascular care (ECC) of pediatric and neonatal patients: pediatric advanced life support". Pediatrics 117 (5): e1005–28.  
  31. ^ a b c Mutchner L (January 2007). "The ABCs of CPR--again". Am J Nurs 107 (1): 60–9; quiz 69–70.  
  32. ^ a b Resuscitation Council (UK). "Pre-hospital cardiac arrest". p. 41. Retrieved 3 September 2014. 
  33. ^ Resuscitation Council (UK) (5 September 2012). "Comments on the duration of CPR following the publication of 'Duration of resuscitation efforts and survival after in-hospital cardiac arrest: an observational study' Goldberger ZD et al. Lancet.". Retrieved 3 September 2014. 
  34. ^ Studnek JR, Thestrup L, Vandeventer S, et al. (September 2010). "The association between prehospital endotracheal intubation attempts and survival to hospital discharge among out-of-hospital cardiac arrest patients". Acad Emerg Med 17 (9): 918–25.  
  35. ^ Bobrow BJ, Ewy GA, Clark L, et al. (November 2009). "Passive oxygen insufflation is superior to bag-valve-mask ventilation for witnessed ventricular fibrillation out-of-hospital cardiac arrest". Annals of Emergency Medicine 54 (5): 656–662.e1.  
  36. ^ Yao, L; Wang, P; Zhou, L; Chen, M; Liu, Y; Wei, X; Huang, Z (Jun 2014). "Compression-only cardiopulmonary resuscitation vs standard cardiopulmonary resuscitation: an updated meta-analysis of observational studies.". The American journal of emergency medicine 32 (6): 517–23.  
  37. ^ Westfall M, Krantz S, Mullin C, Kaufman C (May 2013). "Mechanical Versus Manual Chest Compressions in Out-of-Hospital Cardiac Arrest: A Meta-Analysis". Crit. Care Med. 41 (7): 1782–9.  
  38. ^ Brooks, SC; Bigham, BL; Morrison, LJ (Jan 19, 2011). "Mechanical versus manual chest compressions for cardiac arrest.". The Cochrane database of systematic reviews (1): CD007260.  
  39. ^ Ong, ME; Mackey, KE; Zhang, ZC; Tanaka, H; Ma, MH; Swor, R; Shin, SD (Jun 18, 2012). "Mechanical CPR devices compared to manual CPR during out-of-hospital cardiac arrest and ambulance transport: a systematic review.". Scandinavian journal of trauma, resuscitation and emergency medicine 20: 39.  
  40. ^ Huang, Y; He, Q; Yang, LJ; Liu, GJ; Jones, A (Sep 12, 2014). "Cardiopulmonary resuscitation (CPR) plus delayed defibrillation versus immediate defibrillation for out-of-hospital cardiac arrest.". The Cochrane database of systematic reviews 9: CD009803.  
  41. ^ Zoll AED Plus
  42. ^ Lyon R.M, Cobbe S.M., Bradley J.M., Grubb N.R. et al. (2004). "Surviving out of hospital cardiac arrest at home: a postcode lottery?". Emergency Medical Journal 21: 619–624.  
  43. ^ Olasveengen TM, Sunde K, Brunborg C, Thowsen J, Steen PA, Wik L (November 2009). "Intravenous drug administration during out-of-hospital cardiac arrest: a randomized trial". JAMA 302 (20): 2222–9.  
  44. ^ Lin, S; Callaway, CW; Shah, PS; Wagner, JD; Beyene, J; Ziegler, CP; Morrison, LJ (Mar 15, 2014). "Adrenaline for out-of-hospital cardiac arrest resuscitation: A systematic review and meta-analysis of randomized controlled trials.". Resuscitation 85 (6): 732–40.  
  45. ^ Mentzelopoulos, SD; Zakynthinos, SG; Siempos, I; Malachias, S; Ulmer, H; Wenzel, V (January 2012). "Vasopressin for cardiac arrest: meta-analysis of randomized controlled trials.". Resuscitation 83 (1): 32–9.  
  46. ^ Morley, PT (June 2011). "Drugs during cardiopulmonary resuscitation.". Current Opinion in Critical Care 17 (3): 214–8.  
  47. ^ Attaran, RR; Ewy, GA (July 2010). "Epinephrine in resuscitation: curse or cure?". Future cardiology 6 (4): 473–82.  
  48. ^ Neumar, RW; Otto, CW; Link, MS; Kronick, SL; Shuster, M; Callaway, CW; Kudenchuk, PJ; Ornato, JP; McNally, B; Silvers, SM; Passman, RS; White, RD; Hess, EP; Tang, W; Davis, D; Sinz, E; Morrison, LJ (Nov 2, 2010). "Part 8: adult advanced cardiovascular life support: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care.". Circulation 122 (18 Suppl 3): S729–67.  
  49. ^ Ong, ME; Pellis, T; Link, MS (June 2011). "The use of antiarrhythmic drugs for adult cardiac arrest: a systematic review.". Resuscitation 82 (6): 665–70.  
  50. ^ Perrott, J; Henneberry, RJ; Zed, PJ (December 2010). "Thrombolytics for cardiac arrest: case report and systematic review of controlled trials.". Annals of Pharmacotherapy 44 (12): 2007–13.  
  51. ^ a b Xiao, G; Guo, Q; Shu, M; Xie, X; Deng, J; Zhu, Y; Wan, C (February 2013). "Safety profile and outcome of mild therapeutic hypothermia in patients following cardiac arrest: systematic review and meta-analysis.". Emergency medicine journal : EMJ 30 (2): 91–100.  
  52. ^ a b Nielsen, Niklas; Wetterslev, Jørn; Cronberg, Tobias; Erlinge, David; Gasche, Yvan; Hassager, Christian; Horn, Janneke; Hovdenes, Jan; Kjaergaard, Jesper; Kuiper, Michael; Pellis, Tommaso; Stammet, Pascal; Wanscher, Michael; Wise, Matt P.; Åneman, Anders; Al-Subaie, Nawaf; Boesgaard, Søren; Bro-Jeppesen, John; Brunetti, Iole; Bugge, Jan Frederik; Hingston, Christopher D.; Juffermans, Nicole P.; Koopmans, Matty; Køber, Lars; Langørgen, Jørund; Lilja, Gisela; Møller, Jacob Eifer; Rundgren, Malin; Rylander, Christian; Smid, Ondrej; Werer, Christophe; Winkel, Per; Friberg, Hans (17 November 2013). "Targeted Temperature Management at 33°C versus 36°C after Cardiac Arrest". New England Journal of Medicine 369 (23): 131117131833001.  
  53. ^ Arrich, J; Holzer, M; Havel, C; Müllner, M; Herkner, H (Sep 12, 2012). "Hypothermia for neuroprotection in adults after cardiopulmonary resuscitation.". Cochrane database of systematic reviews (Online) 9: CD004128.  
  54. ^ Kim, F; Nichol, G; Maynard, C; Hallstrom, A; Kudenchuk, PJ; Rea, T; Copass, MK; Carlbom, D; Deem, S; Longstreth WT, Jr; Olsufka, M; Cobb, LA (Nov 17, 2013). "Effect of Prehospital Induction of Mild Hypothermia on Survival and Neurological Status Among Adults With Cardiac Arrest: A Randomized Clinical Trial.". JAMA: the Journal of the American Medical Association 311 (1): 45–52.  
  55. ^ Loertscher, L; Reed, DA, Bannon, MP, Mueller, PS (January 2010). "Cardiopulmonary resuscitation and do-not-resuscitate orders: a guide for clinicians". The American Journal of Medicine 123 (1): 4–9.  
  56. ^ Knox, C; Vereb, JA (December 2005). "Allow natural death: a more humane approach to discussing end-of-life directives". Journal of emergency nursing: JEN : official publication of the Emergency Department Nurses Association 31 (6): 560–1.  
  57. ^ Lehot, JJ; Long-Him-Nam, N; Bastien, O (December 2011). "[Extracorporeal life support for treating cardiac arrest].". Bulletin de l'Academie nationale de medecine 195 (9): 2025–33; discussion 2033–6.  
  58. ^ Camuglia, AC.; Randhawa, VK.; Lavi, S.; Walters, DL. (Sep 2014). "Cardiac catheterization is associated with superior outcomes for survivors of out of hospital cardiac arrest: Review and meta-analysis.". Resuscitation.  
  59. ^ Cave, DM; Gazmuri, RJ, Otto, CW, Nadkarni, VM, Cheng, A, Brooks, SC, Daya, M, Sutton, RM, Branson, R, Hazinski, MF (2010-11-02). "Part 7: CPR techniques and devices: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care.". Circulation 122 (18 Suppl 3): S720–8.  
  60. ^ "Resuscitation Council Comment on CPR study". Resuscitation Council UK. April 2007. Archived from the original on 2007-06-12. Retrieved 2007-06-14. 
  61. ^ "CPR statistics". American Heart Association. Retrieved 2007-06-14. 
  62. ^ Cardiopulmonary Resuscitation (CPR) Statistics
  63. ^ Bunch TJ, White RD, Gersh BJ, et al. (June 2003). "Long-term outcomes of out-of-hospital cardiac arrest after successful early defibrillation". N. Engl. J. Med. 348 (26): 2626–33.  
  64. ^ Ballew KA (May 1997). "Cardiopulmonary resuscitation". BMJ 314 (7092): 1462–5.  
  65. ^ a b van Gijn, MS; Frijns, D; van de Glind, EM; C van Munster, B; Hamaker, ME (Jul 2014). "The chance of survival and the functional outcome after in-hospital cardiopulmonary resuscitation in older people: a systematic review.". Age and ageing 43 (4): 456–63.  
  66. ^ Cobbe SM, Dalziel K, Ford I, Marsden AK (June 1996). "Survival of 1476 patients initially resuscitated from out of hospital cardiac arrest". BMJ 312 (7047): 1633–7.  
  67. ^ "Abstract 969: Lifetime Risk for Sudden Cardiac Death at Selected Index Ages and by Risk Factor Strata and Race: Cardiovascular Lifetime Risk Pooling Project -- Lloyd-Jones et al. 120 (10018): S416 -- Circulation". 

External links

  • The Center for Resuscitation Science at the Hospital of the University of Pennsylvania
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.