World Library  
Flag as Inappropriate
Email this Article

Cardinal voting systems

Article Id: WHEBN0035757246
Reproduction Date:

Title: Cardinal voting systems  
Author: World Heritage Encyclopedia
Language: English
Subject: Voting system, Social choice theory, Psephology, Public choice theory, Condorcet method
Collection: Elections, Electoral Systems, Psephology, Public Choice Theory, Social Choice Theory, Voting Systems
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Cardinal voting systems

Cardinal voting systems are voting systems which allow the voter to give each candidate an independent rating or grade from among at least two levels of approval. Along with ordinal voting systems (also called ranked voting systems), they are the two main branches of modern voting systems to compete with the venerable simple plurality voting.

On a rated ballot, the voter may rate each choice independently.
An approval voting ballot does not require ranking or exclusivity.
A majority judgment ballot is based on grades like those used in schools.

The simplest possible cardinal system is Approval voting, which allows only the two grades "approved" or "unapproved". Other cardinal systems include Range voting, in which ratings are numerical and the candidate with the highest average rating wins; and Majority Judgment, in which ratings are verbal grades and the candidate with the highest median grade wins.

Range voting and cumulative voting systems are other examples of cardinal voting systems. Essentially voters cast multiple approval votes for each candidate or party out of a limited pool. Variants of such systems include disapproval voting options such as negative assignment, but typically out of the same absolute number of votes. That is, a -2 and a +8 add up to ten points, not six, because the absolute value of a negative vote is the same as positive. By avoiding ranking with the implication of a monotonic approval reduction from most to least preferred candidate, cardinal voting systems may solve a very difficult problem.

A foundational result in social choice theory (the study of voting systems) is Arrow's impossibility theorem, which states that no system can comply with all of a simple set of desirable criteria. However, since one of these criteria (called "universality") implicitly requires that a system be ordinal, not cardinal, some have argued that Arrow's theorem does not apply to cardinal systems.[1] Such arguments rest on the idea that cardinality is actually more desirable than passing Arrow's universality criterion. Others, however, argue that this is not true, for instance because interpersonal comparisons of cardinal measures are impossible. If that is the case, then cardinal methods do indeed fail to escape Arrow's result. In any case, cardinal systems do fall under the Gibbard-Satterthwaite theorem, and therefore any such system must be subject to strategic voting in some instances.

References

  1. ^ Vasiljev, Sergei. “Cardinal Voting: The Way to Escape the Social Choice Impossibility.” SSRN eLibrary (April 1, 2008). http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1116545.
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.