World Library  
Flag as Inappropriate
Email this Article
 

Chemical oxygen demand

In pollutants found in surface water (e.g. lakes and rivers) or wastewater, making COD a useful measure of water quality. It is expressed in milligrams per liter (mg/L), which indicates the mass of oxygen consumed per liter of solution.

Contents

  • Overview 1
  • Using potassium dichromate 2
    • Measurement of excess 2.1
  • Preparation Ferroin Indicator reagent 3
    • Calculations 3.1
  • Inorganic interference 4
  • Government regulation 5
  • History 6
  • See also 7
  • References 8
  • External links 9

Overview

The basis for the COD test is that nearly all organic compounds can be fully oxidized to ammonia, and water is given by:

\mbox{C}_n\mbox{H}_a\mbox{O}_b\mbox{N}_c + \left( n + \frac{a}{4} - \frac{b}{2} - \frac{3}{4}c \right)\mbox{O}_2 \rightarrow n\mbox{CO}_2 + \left( \frac{a}{2} - \frac{3}{2}c \right)\mbox{H}_2\mbox{O} + c\mbox{NH}_3

This expression includes the oxygen demand caused by the oxidation of ammonia into nitrate. The process of ammonia being converted into nitrate is referred to as nitrification. The following is the correct equation for the oxidation of ammonia into nitrate.

\mbox{N}\mbox{H}_3 + 2\mbox{O}_2 \rightarrow \mbox{N}\mbox{O}_3^- + \mbox{H}_3\mbox{O}^+

It is applied after the oxidation due to nitrification if the oxygen demand from nitrification must be known. Dichromate does not oxidize ammonia into nitrate, so this nitrification can be safely ignored in the standard chemical oxygen demand test.

The International Organization for Standardization describes a standard method for measuring chemical oxygen demand in ISO 6060 [1].

Using potassium dichromate

Potassium dichromate is a strong oxidizing agent under acidic conditions. (Acidity is usually achieved by the addition of sulfuric acid.) The reaction of potassium dichromate with organic compounds is given by:

\mathrm{C_nH_aO_bN_c\ +\ dCr_2O_7^{2-}\ +\ (8d\ +\ c)H^+ \rightarrow nCO_2\ +\ \frac {a + 8d - 3c}{2}H_2O\ +\ cNH_4^+\ + \ 2dCr^{3+}}

where d = 2n/3 + a/6 - b/3 - c/2. Most commonly, a 0.25 N solution of potassium dichromate is used for COD determination, although for samples with COD below 50 mg/L, a lower concentration of potassium dichromate is preferred.

In the process of oxidizing the organic substances found in the water sample, potassium dichromate is reduced (since in all redox reactions, one reagent is oxidized and the other is reduced), forming Cr3+. The amount of Cr3+ is determined after oxidization is complete, and is used as an indirect measure of the organic contents of the water sample.

Measurement of excess

For all organic matter to be completely oxidized, an excess amount of potassium dichromate (or any oxidizing agent) must be present. Once oxidation is complete, the amount of excess potassium dichromate must be measured to ensure that the amount of Cr3+ can be determined with accuracy. To do so, the excess potassium dichromate is titrated with ferrous ammonium sulfate (FAS) until all of the excess oxidizing agent has been reduced to Cr3+. Typically, the oxidation-reduction indicator Ferroin is added during this titration step as well. Once all the excess dichromate has been reduced, the Ferroin indicator changes from blue-green to a reddish-brown. The amount of ferrous ammonium sulfate added is equivalent to the amount of excess potassium dichromate added to the original sample. Note: Ferroin Indicator is bright red from commercially prepared sources but when added to a digested sample containing potassium dichromate it exhibits a green hue. During the titration the color of the indicator changes from a green hue to a bright blue hue to a redish-brown upon reaching the endpoint. Ferroin indicator changes from red to pale blue when oxidized. [1]

Preparation Ferroin Indicator reagent

A solution of 1.485 g 1,10-phenanthroline monohydrate is added to a solution of 695 mg FeSO4·7H2O in distilled water, and the resulting red solution is diluted to 100 mL.

Calculations

The following formula is used to calculate COD:

COD = \frac{8099900 (b - s)n}{sample\ volume}

where b is the volume of FAS used in the blank sample, s is the volume of FAS in the original sample, and n is the normality of FAS. If milliliters are used consistently for volume measurements, the result of the COD calculation is given in mg/L.

The COD can also be estimated from the concentration of oxidizable compound in the sample, based on its stoichiometric reaction with oxygen to yield CO2 (assume all C goes to CO2), H2O (assume all H goes to H2O), and NH3 (assume all N goes to NH3), using the following formula:

COD = (C/FW)(RMO)(32)
Where C = Concentration of oxidizable compound in the sample,
FW = Formula weight of the oxidizable compound in the sample,
RMO = Ratio of the # of moles of oxygen to # of moles of oxidizable compound in their reaction to CO2, water, and ammonia

For example, if a sample has 500 wppm of phenol:

C6H5OH + 7O2 → 6CO2 + 3H2O
COD = (500/94)(7)(32) = 1191 wppm

Inorganic interference

Some samples of water contain high levels of oxidizable inorganic materials which may interfere with the determination of COD. Because of its high concentration in most wastewater, chloride is often the most serious source of interference. Its reaction with potassium dichromate follows the equation:

\mathrm{6Cl^- + Cr_2O_7^{2-} + 14H^+ \rightarrow 3Cl_2 + 2Cr^{3+} + 7H_2O}

Prior to the addition of other reagents, mercuric sulfate can be added to the sample to eliminate chloride interference.

The following table lists a number of other inorganic substances that may cause interference. The table also lists chemicals that may be used to eliminate such interference, and the compounds formed when the inorganic molecule is eliminated.

Inorganic molecule Eliminated by Elimination forms
Chloride Mercuric sulfate Mercuric chloride complex
Nitrite Sulfamic acid N2 gas
Ferrous iron - -
Sulfides - -

Government regulation

Many governments impose strict regulations regarding the maximum chemical oxygen demand allowed in wastewater before they can be returned to the environment. For example, in Switzerland, a maximum oxygen demand between 200 and 1000 mg/L must be reached before wastewater or industrial water can be returned to the environment [2].

History

For many years, the strong biochemical oxygen demand (BOD) measurements were often much greater than results from COD measurements. This indicated that potassium permanganate was not able to effectively oxidize all organic compounds in water, rendering it a relatively poor oxidizing agent for determining COD.

Since then, other oxidizing agents such as ceric sulphate, potassium iodate, and potassium dichromate have been used to determine COD. Of these, potassium dichromate (K2Cr2O7) has been shown to be the most effective: it is relatively cheap, easy to purify, and is able to nearly completely oxidize almost all organic compounds.

In these methods, a fixed volume with a known excess amount of the oxidant is added to a sample of the solution being analyzed. After a refluxing digestion step, the initial concentration of organic substances in the sample is calculated from a titrimetric or spectrophotometric determination of the oxidant still remaining in the sample. As with all colorimetric methods blanks are used to control for contamination by outside material.


See also

References

  1. ^ http://antoine.frostburg.edu/chem/senese/101/glossary/f.shtml
  • Clair N. Sawyer, Perry L. McCarty, Gene F. Parkin (2003). Chemistry for Environmental Engineering and Science (5th ed.). New York: McGraw-Hill.  
  • Lenore S. Clescerl, Arnold E. Greenberg, Andrew D. Eaton. Standard Methods for Examination of Water & Wastewater (20th ed.). Washington, DC: American Public Health Association.  

"General Chemistry Online". 

External links

  • ISO 6060: Water quality - Determination of the chemical oxygen demand
  • Water chemical oxygen demand (Food and Agriculture Organization of the United Nations)
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.