World Library  
Flag as Inappropriate
Email this Article

Click chemistry

Article Id: WHEBN0001850601
Reproduction Date:

Title: Click chemistry  
Author: World Heritage Encyclopedia
Language: English
Subject: Thiol-ene reaction, Green chemistry, Outline of chemistry, Activity-based proteomics, Bioconjugation
Collection: Organic Chemistry
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Click chemistry

In chemical synthesis, click chemistry is generating substances quickly and reliably by joining small units together. Click chemistry is not a single specific reaction, but describes a way of generating products that follows examples in nature, which also generates substances by joining small modular units. The term was coined by K. Barry Sharpless in 1998, and was first fully described by Sharpless, Hartmuth Kolb, and M.G. Finn of The Scripps Research Institute in 2001.[1][2]

A desirable click chemistry reaction would:[1]

  • be modular
  • be wide in scope
  • give very high chemical yields
  • generate only inoffensive byproducts
  • be stereospecific
  • be physiologically stable
  • exhibit a large thermodynamic driving force (> 84 kJ/mol) to favor a reaction with a single reaction product. A distinct exothermic reaction makes a reactant "spring-loaded".
  • have high atom economy.

The process would preferably:

  • have simple reaction conditions
  • use readily available starting materials and reagents
  • use no solvent or use a solvent that is benign or easily removed (preferably water)
  • provide simple product isolation by non-chromatographic methods (crystallisation or distillation)

Contents

  • Explanation 1
  • Azide alkyne Huisgen cycloaddition 2
  • Applications 3
  • Technology license 4
  • References 5
  • External links 6

Explanation

Proteins are made from repeating amino acid units, and sugars are made from repeating monosaccharide units. The connections are carbon–hetero atom bonds C-X-C, rather than carbon–carbon bonds. In addition, enzymes ensure that chemical processes can overcome large enthalpy hurdles by a series of reactions each requiring only a small energy step. Mimicking nature in organic synthesis may facilitate the discovery of new pharmaceuticals given the large number of possible structures.

In 1996, Guida calculated the size of the pool of drug candidates at 1063, based on the presumption that a candidate consists of fewer than 30 non-hydrogen atoms, weighs less than 500 daltons, is made up of atoms of hydrogen, carbon, nitrogen, oxygen, phosphorus, sulfur, chlorine and bromine, is stable at room temperature, and does not react with oxygen and water.[3] Click chemistry in combination with combinatorial chemistry, high-throughput screening and building chemical libraries speeds up new drug discoveries by making each reaction in a multistep synthesis fast, efficient and predictable.

Many of the Click chemistry criteria are subjective, and even if measurable and objective criteria could be agreed upon, it is unlikely that any reaction will be perfect for every situation and application. However, several reactions have been identified that fit the concept better than others:

Azide alkyne Huisgen cycloaddition

One of the most popular[10][11] reactions within the Click chemistry concept is the

Applications

Click chemistry has widespread applications. Some of them are:

Click chemistry has also been used for selectively labeling biomolecules within biological systems. A Click reaction that is to be performed in a living system must meet an even more rigorous set of criteria than in an in vitro reaction. It must be bioorthogonal, meaning the reagents used may not interact with the biological system in any way, nor may they be toxic. The reaction must also occur at neutral pH and at or around body temperature. Most Click reactions have a high energy content. The reactions are irreversible and involve carbon-hetero atom bonding processes. An example is the Staudinger ligation of azides.

Technology license

The Scripps Research Institute has a portfolio of click chemistry patents.[20] Licensees include Invitrogen,[21] Allozyne,[22] Aileron,[23] Integrated Diagnostics,[24] and the biotech company baseclick, a BASF spin-off created to sell products made using click chemistry.[25] Moreover, baseclick holds a worldwide exclusive license for the research and diagnostic market for the nucleic acid field. Fluorescent azides and alkynes also produced by such companies as Active Motif Chromeon[26] and Cyandye

References

  1. ^ a b H. C. Kolb, M. G. Finn and K. B. Sharpless (2001). "Click Chemistry: Diverse Chemical Function from a Few Good Reactions".  
  2. ^ R. A. Evans (2007). "The Rise of Azide–Alkyne 1,3-Dipolar 'Click' Cycloaddition and its Application to Polymer Science and Surface Modification".  
  3. ^ W.C. Guida et al. Med. Res. Rev. p 3 1996
  4. ^ Spiteri, Christian and Moses, John E. (2010). "Copper-Catalyzed Azide–Alkyne Cycloaddition: Regioselective Synthesis of 1,4,5-Trisubstituted 1,2,3-Triazoles". Angewandte Chemie International Edition 49 (1): 31–33.  
  5. ^ Hoyle, Charles E. and Bowman, Christopher N. (2010). "Thiol–Ene Click Chemistry". Angewandte Chemie International Edition 49 (9): 1540–1573.  
  6. ^ Lowe, A. B. Polymer Chemistry 2010, 1 (1), 17–36. DOI: 10.1039/B9PY00216B
  7. ^ Blackman, Melissa L. and Royzen, Maksim and Fox, Joseph M. (2008). "Tetrazine Ligation: Fast Bioconjugation Based on Inverse-Electron-Demand Diels−Alder Reactivity".  
  8. ^ Stöckmann, Henning; Neves, Andre; Stairs, Shaun; Brindle, Kevin; Leeper, Finian (2011). "Exploring isonitrile-based click chemistry for ligation with biomolecules".  
  9. ^ Kashemirov, Boris A.; Bala, Joy L. F.; Chen, Xiaolan; Ebetino, F. H.; Xia, Zhidao; Russell, R. Graham G.; Coxon, Fraser P.; Roelofs, Anke J.; Rogers Michael J.; McKenna, Charles E. (2008). "Fluorescently labeled risedronate and related analogues: "magic linker" synthesis".  
  10. ^ Development and Applications of Click Chemistry Gregory C. Patton November 8, 2004 http://www.scs.uiuc.edu Online
  11. ^ Kolb, H.C.; Sharpless, B.K. (2003). "The growing impact of click chemistry on drug discovery" 8 (24). pp. 1128–1137.  
  12. ^ Rostovtsev, Vsevolod V.; Green, Luke G; Fokin, Valery V.; Sharpless, K. Barry (2002). "A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective "Ligation" of Azides and Terminal Alkynes". Angewandte Chemie International Edition 41 (14): 2596–2599.  
  13. ^ Tornoe, C. W.; Christensen, C.; Meldal, M. (2002). "Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides".  
  14. ^ Ilya A. Osterman, Alexey V. Ustinov, Denis V. Evdokimov, Vladimir A. Korshun, Petr V. Sergiev, Marina V. Serebryakova, Irina A. Demina, Maria A. Galyamina, Vadim M. Govorun, Olga A. Dontsova (January 2013). "A nascent proteome study combining click chemistry with 2DE" (PDF).  
  15. ^ Cox, Courtney L.; Tietz, Jonathan I.; Sokolowski, Karol; Melby, Joel O.; Doroghazi, James R.; Mitchell, Douglas A. (17 June 2014). "Nucleophilic 1,4-Additions for Natural Product Discovery". ACS Chemical Biology: 140806164747005.  
  16. ^ Michael Floros, Alcides Leão and Suresh Narine (2014). "Vegetable Oil Derived Solvent, and Catalyst Free "Click Chemistry" Thermoplastic Polytriazoles".  
  17. ^ Gabor London, Kuang-Yen Chen, Gregory T. Carroll and Ben L. Feringa (2013). "Towards Dynamic Control of Wettability by Using Functionalized Altitudinal Molecular Motors on Solid Surfaces".  
  18. ^ John E. Moses and Adam D. Moorhouse (2007). "The growing applications of click chemistry".  
  19. ^ Jean-François Lutz and Zoya Zarafshani (2008). "Efficient construction of therapeutics, bioconjugates, biomaterials and bioactive surfaces using azide–alkyne "click" chemistry".  
  20. ^ http://www.scripps.edu/research/technology/clickchem.html
  21. ^ https://ir.lifetechnologies.com/releasedetail.cfm?ReleaseID=538901
  22. ^ http://www.xconomy.com/seattle/2010/07/14/allozyne-licenses-scripps-chemistry/
  23. ^ http://www.xconomy.com/boston/2010/11/30/aileron-and-scripps-ink-deal/
  24. ^ http://www.integrated-diagnostics.com/press-releases/barry-sharpless-click-chemistry/
  25. ^ http://www.basf.com/group/pressrelease/P-10-427
  26. ^ http://www.chromeon.com/

External links

  • Click Chemistry - A Review
  • Click Chemistry: Short Review and Recent Literature
  • National Science Foundation: Feature "Going Live with Click Chemistry."
  • Chemical and Engineering News: Feature "In-Situ Click Chemistry."
  • Chemical and Engineering News: Feature "Copper-free Click Chemistry"
  • Metal-free click chemistry review
  • Click Chemistry - a Chem Soc Rev themed issue highlighting the latest applications of click chemistry, guest edited by M G Finn and Valery Fokin. Published by the Royal Society of Chemistry
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.