World Library  
Flag as Inappropriate
Email this Article

Complement component 5a

Article Id: WHEBN0003272302
Reproduction Date:

Title: Complement component 5a  
Author: World Heritage Encyclopedia
Language: English
Subject: Complement system, C5a receptor, Neutrophil granulocyte, Leukocyte extravasation, Streptococcus pyogenes
Collection: Complement System, Molecular Biology
Publisher: World Heritage Encyclopedia

Complement component 5a

complement component 5
Schematic representation of three-dimensional structure of complement 5a
Symbol C5
Entrez 727
HUGO 1331
OMIM 120900
RefSeq NM_001735
UniProt P01031
Other data
Locus Chr. 9 q34.1

C5a is a protein fragment released from cleavage complement component C5 by protease C5-convertase into C5a and C5b fragments. C5b is important in late events of complement cascade, whereas C5a acts as highly inflammatory peptide. The origin of C5 is in the hepatocyte but its synthesis can also be found in macrophages that may cause local increase of C5a. C5a has chemotactic and anaphylatoxic properties, it is essential in the innate immunity but it is also linked with the adaptive immunity. The increase production of C5a is connected with a number of inflammatory diseases.[1]


  • Structure 1
  • Functions 2
  • Binding process 3
  • Diseases 4
  • References 5
  • External links 6


Human polypeptide C5a contains 74 amino acids and has 11kDa. NMR spectroscopy proved that the molecule is composed of four helices and connected by peptide loops with three disulphide bonds between helix IV and II, III. There is a short 1.5 turn helix on N terminus but all agonist activity take place in the C terminus. C5a is rapidly metabolised by a serum enzyme carboxypeptidase B to a 72 amino acid form C5a des-Arg without C terminal arginine.[2][3]


C5a is an anaphylatoxin, causing increased expression of adhesion molecules on endothelium, contraction of smooth muscle, and increased vascular permeability. C5a des-Arg is a much less potent anaphylatoxin. Both C5a and C5a des-Arg can trigger mast cell degranulation, releasing proinflammatory molecules histamine and TNF-α. C5a is also an effective chemoattractant, initiating accumulation of complement and phagocytic cells at sites of infection or recruitment of antigen-presenting cells to lymph nodes. C5a plays a key role in increasing migration and adherence of neutrophils and monocytes to vessel walls. White blood cells are activated by upregulation of integrin avidity, the lipoxygenase pathway and arachidonic acid metabolism. C5a also modulates the balance between activating versus inhibitory IgG Fc receptors on leukocytes, thereby enhancing the autoimmune response.[1]

Binding process

C5a interact with receptor protein C5a1, C5aR or CD88 on the surface of target cells such as macrophages, neutrophils and endothelial cells. C5aR is a member of the G-protein-coupled receptor superfamily of proteins, predicted to have seven transmembrane helical domains of largely hydrophobic amino acid residues, forming three intra- and three extra-cellular loops, with an extracellular N-terminus and an intracellular C-terminus. C5a binding to the receptor is a two-stage process: an interaction between basic residues in the helical core of C5a and acidic residues in the extracellular N-terminal domain allows the C-terminus of C5a to bind to residues in the receptor transmembrane domains. The latter interaction leads to receptor activation, and the transduction of the ligand binding signal across the cell plasma membrane to the cytoplasmic G protein Gi type GNAI2.[4] Sensitivity of C5aR to C5a stimulation is enhanced by Lipopolysaccharides exposure, yet this is not due to C5aR upregulation.<.[5] C5L2 is another C5a receptor that is thought to regulate the C5a-C5aR effects. There is apparently contradictory evidence showing decoy receptor activity conferring anti-inflammatory properties and also signalling activity conferring pro-inflammatory properties.[6][1]


C5a is a powerful inflammatory mediator, and seems to be a key factor in the development of pathology of many inflammatory diseases involving the complement system such as sepsis, rheumatoid arthritis, inflammatory bowel disease, systemic lupus erythemotosis, psoriasis. The inhibitor of C5a that can block its effects would be helpful in medical applications. One of inhibition substances is analogue of compstatin or monoclonal antibody against C5 called eculizumab however they are not specific only for C5a and interfere with others.[1][3] Another candidate is PMX53 or PMX205 that is highly specific for CD88 and effectively reduces inflammatory response.[7][8]


  1. ^ a b c d Manthey HD, Woodruff TM, Taylor SM, Monk PN (2009). "Complement component 5a (C5a).". Int J Biochem Cell Biol 41 (11): 2114–7.  
  2. ^ Andreas Klos, Elisabeth Wende, Kathryn J. Wareham, and Peter N. Monk (2013). "International Union of Pharmacology. LXXXVII. Complement Peptide C5a, C4a, and C3a Receptors". Pharmacological Reviews 65 (1): 500–543.  
  3. ^ a b Ward PA (2004). "The dark side of C5a in sepsis.". Nat Rev Immunol 4 (2): 133–42.  
  4. ^ PROW and IWHLDA present the GUIDE on: CD88
  5. ^ Raby AC, Holst B, Davies J, Colmont C, Laumonnier Y, Coles B, Shah S, Hall J, Topley N, Khol J, Morgan BP, Labeta MO (2011). "TLR activation enhances C5a-induced pro-inflammatory responses by negatively modulating the second C5a receptor, C5L2.". European Journal of Immunology 41 (9): 2741–2752.  
  6. ^ Klos A, Wende E, Wareham KJ, Monk PN. (2013). "International Union of Pharmacology. LXXXVII. Complement peptide C5a, C4a, and C3a receptors". Pharmacol. Rev. 65 (1): 500–43.  
  7. ^ Woodruff TM, Crane JW, Proctor LM, Buller KM, Shek AB, de Vos K; et al. (2006). "Therapeutic activity of C5a receptor antagonists in a rat model of neurodegeneration.". FASEB J 20 (9): 1407–17.  
  8. ^ Jain U, Woodruff TM, Stadnyk AW (2013). "The C5a receptor antagonist PMX205 ameliorates experimentally induced colitis associated with increased IL-4 and IL-10.". Br J Pharmacol 168 (2): 488–501.  

External links

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.