World Library  
Flag as Inappropriate
Email this Article

Cytosine

Article Id: WHEBN0000006016
Reproduction Date:

Title: Cytosine  
Author: World Heritage Encyclopedia
Language: English
Subject: List of Y-DNA single-nucleotide polymorphisms, DNA base flipping, DNA, Uracil, Guanine
Collection: Amines, Nucleobases, Pyrimidones
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Cytosine

Cytosine
Names
IUPAC name
4-aminopyrimidin-2(1H)-one
Other names
4-amino-1H-pyrimidine-2-one
Identifiers
 YesY
ChEBI  YesY
ChEMBL  YesY
ChemSpider  YesY
Jmol-3D images Image
KEGG  YesY
MeSH
PubChem
UNII  YesY
Properties
C4H5N3O
Molar mass 111.10 g/mol
Density 1.55 g/cm3 (calculated)
Melting point 320 to 325 °C (608 to 617 °F; 593 to 598 K) (decomposes)
Acidity (pKa) 4.45 (secondary), 12.2 (primary)[1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
 YesY  (: YesY/N?)

Cytosine (C) is one of the four main bases found in DNA and RNA, along with adenine, guanine, and thymine (uracil in RNA). It is a pyrimidine derivative, with a heterocyclic aromatic ring and two substituents attached (an amine group at position 4 and a keto group at position 2). The nucleoside of cytosine is cytidine. In Watson-Crick base pairing, it forms three hydrogen bonds with guanine.

Contents

  • History 1
  • Chemical reactions 2
  • References 3
  • External links and Citations 4

History

Cytosine was discovered and named by Albrecht Kossel and Albert Neumann in 1894 when it was hydrolyzed from calf thymus tissues.[2][3] A structure was proposed in 1903, and was synthesized (and thus confirmed) in the laboratory in the same year.

Cytosine recently found use in quantum computation. The first time any quantum mechanical properties were harnessed to process information took place on August 1 in 1998 when researchers at Oxford implemented David Deutsch's algorithm on a two qubit nuclear magnetic resonance quantum computer (NMRQC) based on cytosine.[4]

In March 2015, NASA scientists reported that, for the first time, complex life, including uracil, cytosine and thymine, have been formed in the laboratory under outer space conditions, using starting chemicals, such as pyrimidine, found in meteorites. Pyrimidine, like polycyclic aromatic hydrocarbons (PAHs), the most carbon-rich chemical found in the Universe, may have been formed in red giants or in interstellar dust and gas clouds, according to the scientists.[5]

Chemical reactions

Cytosine with numbered components. Methylation occurs on carbon nr 5.

Cytosine can be found as part of DNA, as part of RNA, or as a part of a nucleotide. As cytidine triphosphate (CTP), it can act as a co-factor to enzymes, and can transfer a phosphate to convert adenosine diphosphate (ADP) to adenosine triphosphate (ATP).

In DNA and RNA, cytosine is paired with guanine. However, it is inherently unstable, and can change into uracil (spontaneous deamination). This can lead to a point mutation if not repaired by the DNA repair enzymes such as uracil glycosylase, which cleaves a uracil in DNA.

When found third in a codon of RNA, cytosine is synonymous with uracil, as they are interchangeable as the third base. When found as the second base in a codon, the third is always interchangeable. For example, UCU, UCC, UCA and UCG are all serine, regardless of the third base.

Cytosine can also be

  • Cytosine MS Spectrum

External links and Citations

  1. ^
  2. ^ A. Kossel and Albert Neumann (1894) "Darstellung und Spaltungsprodukte der Nucleïnsäure (Adenylsäure)" (Preparation and cleavage products of nucleic acids (adenic acid)), Berichte der Deutschen Chemischen Gesellschaft zu Berlin, 27 : 2215-2222. The name "cytosine" is coined on page 2219: " … ein Produkt von basischen Eigenschaften, für welches wir den Namen "Cytosin" vorschlagen." ( … a product with basic properties, for which we suggest the name "cytosine".)
  3. ^
  4. ^
  5. ^
  6. ^

References

The implications of deamination on 5-hydroxymethylcytosine, on the other hand, remains less understood. [6]

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.