World Library  
Flag as Inappropriate
Email this Article

Dayton Miller

Article Id: WHEBN0000261365
Reproduction Date:

Title: Dayton Miller  
Author: World Heritage Encyclopedia
Language: English
Subject: Paul D. Foote, Myriam Sarachik, Ernest Merritt, Arthur Gordon Webster, Arthur Jeffrey Dempster
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Dayton Miller

Dayton C. Miller
Circa 1921
Born (1866-03-13)March 13, 1866
Strongsville, Ohio, USA
Died February 22, 1941(1941-02-22) (aged 74)
USA
Nationality  United States
Fields Physicist
Institutions Case School of Applied Science
Alma mater Princeton University
Doctoral advisor Charles A. Young
Known for X-rays
Aether theory
Absolute space
Acoustics
Notable awards Edward Longstreth Medal (1917)
Newcomb Cleveland Prize (1925)
Elliott Cresson Medal (1927)

Dayton Clarence Miller (March 13, 1866 – February 22, 1941)[1][2][3][4] was an American physicist, astronomer, acoustician, and accomplished amateur flautist. An early experimenter of X-rays, Miller was an advocate of aether theory and absolute space and an opponent of Albert Einstein's theory of relativity.

Born in American Academy of Arts and Sciences and the American Philosophical Society. During the 1920s, he served as secretary, vice president, and president of the American Physical Society and as chairman of the division of Physical Sciences of the National Research Council. From 1931 to 1933 he was president of the Acoustical Society of America.

Scientific Contributions

Aether research

In 1900, he began work with Edward Morley on the detection of aether drift,[5] at the time one of the "hot" areas of fundamental physics. Following on with the basic apparatus as the earlier Michelson-Morley experiment, Miller and Morley published another null result in 1904. These experimental results were later cited in support of Albert Einstein's theory of relativity. Miller continued to work on refining his experimental techniques after 1904, conducting millions of measurements on aether drift, and eventually developing the most sensitive interferometer in the world at that time. He performed over 326,000 turns of interferometer[6][7][8][9][10] with 16 readings each one, (more than 5,200,000 measurements). They showed what appeared to be a small amount of drift (about 9 km/s, 1/3 of the velocity of the earth around the sun): With white light and 32 m arms he could see nearly always the same result:

- A shift amplitude of 0.12 ± 0.01 fringe, incompatible with zero.

- A shift phase which points to an apex in the constellation "El Dorado".

The amplitude analysis suggests a drag of aether. But the analysis of phase suggests that the Solar System goes towards the constellation Dorado (Mahimahi) at a speed of 227 km/s.

These results were presented by Miller as a positive indication of the existence of an aether drift. However, the effect Miller saw was tiny - much smaller than would be expected for a stationary aether. In order for these results to be consistent with an aether, it had to be assumed that the aether was dragged along with the earth to a much greater extent than aether theories typically predicted. Furthermore, the measurement was statistically far from any other measurements being carried on at the time. Fringe shifts of about 0.01 were being observed in many experiments, while Miller's 0.08 was not duplicated anywhere else—including Miller's own 1904 experiments with Morley, which showed a drift of only 0.015. Based on an error analysis, Miller's critics argued that he overestimated the precision of his results, and that his measurements were actually perfectly consistent with a fringe difference of zero—the null result that every other experiment was recording. However, Miller continued to defend his results, claiming that the probable reason for the so-called null results were that they were not being done at high locations (such as mountain tops) where the ether wind (drift) was supposedly much higher due to less ether drag.[11] Miller did experiments that gave positive results high up on the top of Mount Wilson (California) where the aether wind was presumably about 10 or 15 times higher than results obtained by Miller (and Joos) in urban cities where the aether wind is supposedly more entrained (more drag).[12]

Einstein was interested in this aether drift theory and acknowledged that a positive result for the existence of aether would invalidate the theory of special relativity, but commented that altitudal influences and temperatures may have provided sources of error in the findings. Miller commented:

The trouble with Professor Einstein is that he knows nothing about my results. [...] He ought to give me credit for knowing that temperature differences would affect the results. He wrote to me in November suggesting this. I am not so simple as to make no allowance for temperature.

During the 1920s a number of experiments, both [11]

Shankland analysis

In 1955, Robert S. Shankland, S. W. McCuskey, F. C. Leone, and G. Kuerti performed a re-analysis of Miller's results. Shankland, who led the report, noted that the "signal" that Miller observed in 1933 is actually composed of points that are an average of several hundred measurements each, and the magnitude of the signal is more than 10 times smaller than the resolution with which the measurements were recorded. Miller's extraction of a single value for the measurement is statistically impossible, the data is too variable to say "this" number is any better than "that" -- the data, from Shankland's position, supports a null result as equally as Miller's positive.

Shankland concluded that Miller's observed signal was partly due to statistical fluctuations and partly due to local temperature conditions and, also, suggested that the results of Miller were due to a systematic error rather than an observed existence of aether. In particular he felt that Miller did not take enough care in guarding against thermal gradients in the room where the experiment took place, as, unlike most interferometry experiments, Miller conducted his in a room where the apparatus was deliberately left open to the elements to some degree.

In Shankland's analysis, no statistically significant signal for the existence of aether was found. Shankland concluded that Miller's observed signal was spurious, due mainly to uncontrolled temperature effects rather than to the observed existence of an aether. In addition, some mainstream scientists today have argued that any signal that Miller observed was the result of the experimenter effect, i.e., a bias introduced by the experimenter's wish to find a certain result, which was a common source of systematic error in statistical analysis of data before modern experimental techniques were developed. (This effect was not addressed by name in Miller's early textbook on experimental techniques; cf., Ginn & Company, 1903).

William Broad and Nicholas Wade, reporters who wrote Betrayers of the Truth: Fraud in Science (1983), have stated that scientists should have reviewed Miller's research more seriously at the time, and that their refusal to do so is evidence of incompetence and unprofessional conduct. Robert Crease argues that it would have been "irrational and unscientific" to suspend Einstein's theory because of a contrary experiment. In Crease's opinion, this would allow some antiscientific ideologues (e.g., some Soviet scientists) to stop progress through falsification.[15] Relativists discount Miller's repeated attempts to bring relativity theory into question by citing several modern precision experiments,[13][16][17][18][19] but dissidents have argued in fringe venues that Miller's objections still stand.[20][21]

Roberts analysis

In 1986, Tom Roberts performed a standard error analysis of Miller's "Ether drift" data, using 67 of Miller's original data sheets (obtained from the CWRU archives). This error analysis is related to the averaging Miller performed, and is unassailable.[13] The errorbars on the individual data points are nearly 10 times larger than the variation in those points, so Miller's results are not statistically meaningful; not even close. It is also shown why Miller thought his result was valid: the data analysis he used is a comb filter that aliases most of the noise into the same bin where a signal would be, accurately mimicking the signal he sought. In addition, a re-analysis using modern techniques accurately models the drift of the interferometer; the 42 runs for which the instrument was reasonably stable yield an upper limit on "ether drift" of 6 km/s (90% c.l.).

Other endeavors

Dr. Miller published manuals designed to be student handbooks for the performance of experimental problems in physics. In 1908, Miller's interest in acoustics led him to develop a machine to record sound waves photographically, called the phonodeik. He used the machine to compare the waveforms produced by flutes crafted from different materials. During World War I, Miller worked with the physical characteristics of pressure waves of large guns at the request of the government. Dayton Miller was elected to the National Academy of Science in 1921. He was a member of the National Research Council in Washington, D.C. from 1927 to 1930.[22]

Published works

  • Laboratory Physics, a Student's Manual for Colleges and Scientific Schools. (New York: Ginn & Company, 1903)
  • Extract from a Letter dated Cleveland, Ohio, August 5th, 1904, to Lord Kelvin from Profs. Edward W. Morley and Dayton C. Miller., (Philosophical Magazine, S. 6, Vol. 8. No. 48, Dec. 1904, pp. 753–754)
  • On the Theory of Experiments to detect Aberrations of the Second Degree. (with Edward Morley, Philosophical Magazine, S. 6, Vol. 9. No. 53, May 1905, pp. 669–680)
  • Report of an experiment to detect the Fitzgerald-Lorentz Effect (with Edward Morley, Proceedings of the American Academy of Arts and Sciences, Vol. XLI, No. 12. 1905)
  • Final Report on Ether-drift Experiments (with Edward Morley, Science, Vol. XXV, No. 2. p. 525, 1907)
  • The Science of Musical Sounds (New York: The Macmillan Company, 1916, revised 1926)
  • Anecdotal History of the Science of Sound (New York: The Macmillan Company, 1935)
  • Sound Waves: Their Shape and Speed (New York: The Macmillan Company, 1937)
  • Sparks, Lightning and Cosmic Rays (New York: The Macmillan Company, 1939)
  • The Ether-Drift Experiments and the Determination of the Absolute Motion of the Earth (Reviews of Modern Physics 5, 203-242 (1933))

See also

References and external links

  1. ^ Robert S. Shankland, "Dayton Clarence Miller: Physics Across Fifty Years."
  2. ^ Harvey Fletcher, "Biographical Memoir of Dayton Clarence Miller 1866-1941," National Academy of Sciences of the USA Biographical Memoirs, V23, N3, 16pp (1943).
  3. ^ Obituary, Encyclopedia of Cleveland History
  4. ^ William J. Maynard, Dayton C. Miller: His Life, Work, and Contributions as a Scientist and Organologist, Master's thesis, Long Island University 1971).
  5. ^ Henry T. Eddy, Edward W. Morley, and Dayton C. Miller, "The Velocity of Light in the Magnetic Field," Physical Review, S1, V7, N5, pp. 283-295 (Dec 1898).
  6. ^ Dayton C. Miller, "Ether-drift Experiments at Mount Wilson Solar Observatory," Physical Review, S2, V19, N4, pp. 407-408 (Apr 1922).
  7. ^ Dayton C. Miller, "Significance of Ether-drift Experiments of 1925 at Mount Wilson," Address of the President, American Physical Society, Science, V63, pp. 433-443 (1926). A.A.A.S Prize paper.
  8. ^ Dayton C. Miller, "Ether-drift Experiments at Mount Wilson in February, 1926, National Academy of Sciences, Washington (Apr 1926) {Physical Review, S2, V27, N6, pp. 812 (Jun 1926)}.
  9. ^ Dayton C. Miller, "The Ether-Drift Experiment and the Determination of the Absolute Motion of the Earth," Rev. Mod. Phys., V5, N3, pp. 203-242 (Jul 1933).
  10. ^ George Joos & Dayton C. Miller, "Note on the Repetition of the Michelson-Morley Experiment," Physical Review, S2, V45, N2, pp. 114 (Jan 1934).
  11. ^ a b Miller disagrees with Joos 1934: Dayton Miller & Georg Joos, "Letters to the Editor", Physical Review, Vol. 45, p.114, 15 Jan. 1934.
  12. ^ Ether-drift experiments at Mount Wilson. By Dayton C. Miller. Read before the Academy. April 28, 1925. Proceedings of the National Academy of Sciences of U.S.A. V.11., №6, p.306-314. 1925
  13. ^ a b c
  14. ^ Michelson-Morley experiment#The most famous failed experiment
  15. ^ Robert P Crease, "Finding the flaw in falsifiability," Physics World (Dec 2002).
  16. ^ Institut für Physik
  17. ^ Institut für Physik
  18. ^ Achim Peters, "New Optical Tests of Relativity on Earth and in Space" (Mar 2003).
  19. ^ Claus Lämmerzahl, Hansjörg Dittus, Achim Peters, Stefan Schiller, "OPTIS: A Satellite-Based Test of Special and General Relativity," Classical and Quantum Gravity, V18, p. 2499-2508 (2002).
  20. ^ Hector Munera, The Effect of Solar Motion upon the Fringe-Shifts in a Michelson-Morley Interferometer µa la Miller," Annales de la Fondation Louis de Broglie, V27, N3, p. 463-484 (2002).
  21. ^ "James DeMeo, Dayton Miller's Ether-Drift Experiments: A Fresh Look, Pulse of the Planet #5; (2002). James DeMeo, A Dynamic And Substantive Cosmicological Ether Proceedings of the Natural Philosophy Alliance, Cynthia Whitney, Editor, Vol.1, No.1, Spring 2004. Arlington, MA. p.15-20.
  22. ^ The Ohio Academy of Science.

Main

  • "Dayton Clarence Miller". Today in Science, March 13 - births.
  • "Dayton Miller images". American Institute of Physics, 2003.
  • William Fickinger "Miller's Waves" an Informal Scientific Biography 2011.

Other endeavors

  • Dayton C. Miller Flute Collection at The Library of Congress.
  • Dayton Miller's acoustics collection, describing his research in acoustics
  • "The Phonodeik". The science of musical sounds.
  • "Professor Dayton Miller's Research in Acoustics". Engineering Sciences E-129.
  • "Crookes x-ray tubes" Dittrick Medical History Center, Case Western Reserve University. 2004.
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.