World Library  
Flag as Inappropriate
Email this Article

Decimal32 floating-point format

Article Id: WHEBN0023558692
Reproduction Date:

Title: Decimal32 floating-point format  
Author: World Heritage Encyclopedia
Language: English
Subject: Floating point, Decimal128 floating-point format, Decimal64 floating-point format, Floating-point, Machine epsilon
Collection: Computer Arithmetic, Data Types
Publisher: World Heritage Encyclopedia

Decimal32 floating-point format

In computing, decimal32 is a decimal floating-point computer numbering format that occupies 4 bytes (32 bits) in computer memory. It is intended for applications where it is necessary to emulate decimal rounding exactly, such as financial and tax computations. Like the binary16 format, it is intended for memory saving storage.

Decimal32 supports 7 decimal digits of significand and an exponent range of −95 to +96, i.e. ±0.000000×10^−95 to ±9.999999×10^96. (Equivalently, ±0000000×10^−101 to ±9999999×10^90.) Because the significand is not normalized (there is no implicit leading "1"), most values with less than 7 significant digits have multiple possible representations; 1×102=0.1×103=0.01×104, etc. Zero has 192 possible representations (384 when both signed zeros are included).

Decimal32 floating point is a relatively new decimal floating-point format, formally introduced in the 2008 version of IEEE 754.


  • Representation of decimal32 values 1
    • Binary integer significand field 1.1
    • Densely packed decimal significand field 1.2
  • See also 2
  • References 3

Representation of decimal32 values

Sign Combination Exponent continuation Coefficient continuation
1 bit 5 bits 6 bits 20 bits
s mmmmm xxxxxx cccccccccccccccccccc

IEEE 754 allows two alternative representation methods for decimal32 values. The standard does not specify how to signify which representation is used, for instance in a situation where decimal32 values are communicated between systems.

In one representation method, based on binary integer decimal, the significand is represented as binary coded positive integer.

The other, alternative, representation method is based on densely packed decimal for most of the significand (except the most significant digit).

Both alternatives provide exactly the same range of representable numbers: 7 digits of significand and 3×26=192 possible exponent values.

In both cases, the most significant 4 bits of the significand (which actually only have 10 possible values) are combined with the most significant 2 bits of the exponent (3 possible values) to use 30 of the 32 possible values of a 5-bit field called the combination field. The remaining combinations encode infinities and NaNs.

Combination field Exponent Begins With Coefficient Digit Other
00mmm 00 0mmm
01mmm 01 0mmm
10mmm 10 0mmm
1100m 00 100m
1101m 01 100m
1110m 10 100m
11110 ±Infinity
11111 NaN. Sign bit ignored. First bit of exponent continuation field determines if NaN is signaling.

Binary integer significand field

This format uses a binary significand from 0 to 107−1 = 9999999 = 98967F16 = 1001100010010110011111112. The encoding can represent binary significands up to 10×220−1 = 10485759 = 9FFFFF16 = 1001111111111111111111112, but values larger than 107−1 are illegal (and the standard requires implementations to treat them as 0, if encountered on input).

As described above, the encoding varies depending on whether the most significant 4 bits of the significand are in the range 0 to 7 (00002 to 01112), or higher (10002 or 10012).

If the 2 bits after the sign bit are "00", "01", or "10", then the exponent field consists of the 8 bits following the sign bit, and the significand is the remaining 23 bits, with an implicit leading 0 bit:

s 00eeeeee (0)TTTtttttttttttttttttttt
s 01eeeeee (0)TTTtttttttttttttttttttt
s 10eeeeee (0)TTTtttttttttttttttttttt

This includes subnormal numbers where the leading significand digit is 0.

If the 4 bits after the sign bit are "1100", "1101", or "1110", then the 8-bit exponent field is shifted 2 bits to the right (after both the sign bit and the "11" bits thereafter), and the represented significand is in the remaining 21 bits. In this case there is an implicit (that is, not stored) leading 3-bit sequence "100" in the true significand.

s 11 00eeeeee (100)Ttttttttttttttttttttt
s 11 01eeeeee (100)Ttttttttttttttttttttt
s 11 10eeeeee (100)Ttttttttttttttttttttt

The "11" 2-bit sequence after the sign bit indicates that there is an implicit "100" 3-bit prefix to the significand. Compare having an implicit 1 in the significand of normal values for the binary formats. Note also that the "00", "01", or "10" bits are part of the exponent field.

Note that the leading bits of the significand field do not encode the most significant decimal digit; they are simply part of a larger pure-binary number. For example, a significand of 8000000 is encoded as binary 011110100001001000000000, with the leading 4 bits encoding 7; the first significand which requires a 24th bit is 223 = 8388608

In the above cases, the value represented is

(−1)sign × 10exponent−101 × significand

If the four bits after the sign bit are "1111" then the value is an infinity or a NaN, as described above:

s 11110 xx...x    ±infinity
s 11111 0x...x    a quiet NaN
s 11111 1x...x    a signalling NaN

Densely packed decimal significand field

In this version, the significand is stored as a series of decimal digits. The leading digit is between 0 and 9 (3 or 4 binary bits), and the rest of the significand uses the densely packed decimal encoding.

Unlike the binary integer significand version, where the exponent changed position and came before the significand, this encoding combines the leading 2 bits of the exponent and the leading digit (3 or 4 bits) of the significand into the five bits that follow the sign bit.

This six bits after that are the exponent continuation field, providing the less-significant bits of the exponent.

The last 20 bits are the significand continuation field, consisting of 2 10-bit "declets". Each declet encodes three decimal digits using the DPD encoding.

If the first two bits after the sign bit are "00", "01", or "10", then those are the leading bits of the exponent, and the three bits after that are interpreted as the leading decimal digit (0 to 7):

s 00 TTT (00)eeeeee (0TTT)[tttttttttt][tttttttttt]
s 01 TTT (01)eeeeee (0TTT)[tttttttttt][tttttttttt]
s 10 TTT (10)eeeeee (0TTT)[tttttttttt][tttttttttt]

If the 4 bits after the sign bit are "1100", "1101", or "1110", then the second two bits are the leading bits of the exponent, and the last bit is prefixed with "100" to form the leading decimal digit (8 or 9):

s 1100 T (00)eeeeee (100T)[tttttttttt][tttttttttt]
s 1101 T (01)eeeeee (100T)[tttttttttt][tttttttttt]
s 1110 T (10)eeeeee (100T)[tttttttttt][tttttttttt]

The remaining two combinations (11110 and 11111) of the 5-bit field are used to represent ±infinity and NaNs, respectively.

The DPD/3BCD transcoding for the declets is given by the following table. b9...b0 are the bits of the DPD, and d2...d0 are the three BCD digits.

Densely packed decimal encoding rules[1]
DPD encoded value Decimal digits
b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 d2 d1 d0 Values encoded Control Description
a b c d e f 0 g h i 0abc 0def 0ghi (0–7) (0–7) (0–7) b3=0
Three small digits
a b c d e f 1 0 0 i 0abc 0def 100i (0–7) (0–7) (8–9) b3=1, b2b1≠11
Two small digits,
one large
b2b1=00, d0=large
a b c g h f 1 0 1 i 0abc 100f 0ghi (0–7) (8–9) (0–7) b2b1=01, d1=large
g h c d e f 1 1 0 i 100c 0def 0ghi (8–9) (0–7) (0–7) b2b1=10, d2=large
g h c 0 0 f 1 1 1 i 100c 100f 0ghi (0–7) (8–9) (8–9) b3=1, b2b1=11, b6b5≠11
One small digit,
two large
b6b5=00, d0=small
d e c 0 1 f 1 1 1 i 100c 0def 100i (8–9) (0–7) (8–9) b6b5=01, d1=small
a b c 1 0 f 1 1 1 i 0abc 100f 100i (8–9) (8–9) (0–7) b6b5=10, d2=small
x x c 1 1 f 1 1 1 i 100c 100f 100i (8–9) (8–9) (8–9) b3=1, b2b1=11, b6b5=11
Three large digits

The 8 decimal values whose digits are all 8s or 9s have four codings each. The bits marked x in the table above are ignored on input, but will always be 0 in computed results. (The 8×3 = 24 non-standard encodings fill in the gap between 103=1000 and 210=1024.)

In the above cases, with the true significand as the sequence of decimal digits decoded, the value represented is

(-1)^\text{signbit}\times 10^{\text{exponentbits}_2-101_{10}}\times \text{truesignificand}_{10}

See also


  1. ^  
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.