World Library  
Flag as Inappropriate
Email this Article

Deviation (statistics)

Article Id: WHEBN0009252911
Reproduction Date:

Title: Deviation (statistics)  
Author: World Heritage Encyclopedia
Language: English
Subject: Errors and residuals, Extreme value theory, Periodic matrix set, Mean deviation, Kurtosis
Collection: Statistical Terminology
Publisher: World Heritage Encyclopedia

Deviation (statistics)

In mathematics and statistics, deviation is a measure of difference between the observed value of a variable and some other value, often that variable's mean. The sign of the deviation (positive or negative), reports the direction of that difference (the deviation is positive when the observed value exceeds the reference value). The magnitude of the value indicates the size of the difference.


  • Types of deviation 1
  • Unsigned or absolute deviation 2
  • Measures of deviation 3
    • Central tendency 3.1
    • Dispersion 3.2
    • Normalization 3.3
  • See also 4

Types of deviation

A deviation that is a difference between an observed value and the true value of a quantity of interest (such as a population mean) is an error and a deviation that is the difference between the observed value and an estimate of the true value (such an estimate may be a sample mean) is a residual. These concepts are applicable for data at the interval and ratio levels of measurement.

Unsigned or absolute deviation

In statistics, the absolute deviation of an element of a data set is the absolute difference between that element and a given point. Typically the deviation is reckoned from the central value, being construed as some type of average, most often the median or sometimes the mean of the data set.

D_i = |x_i-m(X)|


Di is the absolute deviation,
xi is the data element
and m(X) is the chosen measure of central tendency of the data set—sometimes the mean (\overline{x}), but most often the median.

Measures of deviation

Central tendency

For an unbiased estimate, the sum of the signed deviations across the entire set of all observations from the overall sample mean is always zero, and the expected, mean, or average deviation is also zero; conversely, a nonzero average deviation quantifies the bias exhibited by the estimate.


Statistics of the distribution of deviations are used as measures of statistical dispersion.


Deviations have units of the measurement scale (for instance, meters if measuring lengths). One can nondimensionalize in two ways.

One way is by dividing by a measure of scale (statistical dispersion), most often either the population standard deviation, in standardizing, or the sample standard deviation, in studentizing (e.g., Studentized residual).

One can scale instead by location, not dispersion: the formula for a percent deviation is the observed value minus accepted value divided by the accepted value multiplied by 100%.

See also

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.