World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0000522519
Reproduction Date:

Title: Diastereomer  
Author: World Heritage Encyclopedia
Language: English
Subject: Ring-closing metathesis, Cryptophane, Diastereomeric recrystallization, Nuclear magnetic resonance spectroscopy of stereoisomers, Asymmetric induction
Collection: Isomerism, Stereochemistry
Publisher: World Heritage Encyclopedia


D-Threose D-Erythrose

Diastereomers (sometimes called diastereoisomers) are a type of a stereoisomer.[1] Diastereomerism occurs when two or more stereoisomers of a compound have different configurations at one or more (but not all) of the equivalent (related) stereocenters and are not mirror images of each other.[2] When two diastereoisomers differ from each other at only one stereocenter they are epimers. Each stereocenter gives rise to two different configurations and thus increases the number of stereoisomers by a factor of two.

Diastereomers differ from enantiomers in that the latter are pairs of stereoisomers that differ in all stereocenters and are therefore mirror images of one another.[3] Enantiomers of a compound with more than one stereocenter are also diastereomers of the other stereoisomers of that compound that are not their mirror image. Diastereomers have different physical properties (unlike organic reaction.


  • Syn / anti 1
  • Erythro / threo 2
  • Multiple stereocenters 3
  • Example 4
  • Applications 5
  • See also 6
  • References 7

Syn / anti

When the single bond between the two centres is free to rotate, cis/trans descriptors are invalid. Two widely accepted prefixes used to distinguish diastereomers on sp³-hybridised bonds in an open-chain molecule are syn and anti. Masamune proposed the descriptors which work even if the groups are not on adjacent carbons. It also works regardless of CIP priorities. Syn describes groups on the SAME face while anti describes groups on OPPOSITE faces. The concept applies only to the Zigzag projection. The descriptors only describe relative stereochemistry rather than absolute stereochemistry.

Erythro / threo

Two older prefixes still commonly used to distinguish diastereomers are threo and erythro. In the case of carbohydrates, when drawn in the Fischer projection the erythro isomer has two identical substituents on the same side and the threo isomer has them on opposite sides.[4] When drawn as a zig-zag chain, the erythro isomer has two identical substituents on different sides of the plane (anti). The names are derived from the diastereomeric aldoses erythrose (a syrup) and threose (melting point 126 °C). These prefixes are not recommended for use outside of the realm of carbohydrates because their definitions can lead to conflicting interpretations.[5]

Another threo compound is threonine, one of the essential amino acids. The erythro diastereomer is called allo-threonine.

L-Threonine (2S,3R) and D-Threonine (2R,3S)
L-allo-Threonine (2S,3S) and D-allo-Threonine (2R,3R)

Multiple stereocenters

If a molecule contains two asymmetric carbons, there are up to 4 possible configurations, and they cannot all be non-superimposable mirror images of each other. The possibilities continue to multiply as there are more asymmetric centers in a molecule. In general, the number of configurational isomers of a molecule can be determined by calculating 2n, where n = the number of chiral centers in the molecule. This holds true except in cases where the molecule has meso forms.

For n = 3, there are eight stereoisomers. There are four pairs of enantiomers: R,R,R and S,S,S; R,R,S and S,S,R; R,S,S and S,R,R; and R,S,R and S,R,S. There are four diastereomers, because each of the pairs of enantiomers is a diastereomer with respect to the other three. For n = 4, there are sixteen stereoisomers, or eight pairs of enantiomers. The four aldopentoses and the eight aldohexoses (subsets of the five- and six-carbon sugars) are examples of sets of compounds that differ in this way.


Tartaric acid contains two asymmetric centers, but two of the "isomers" are equivalent and together are called a meso compound. This configuration is not optically active, while the remaining two isomers are D- and L- mirror images, i.e., enantiomers. The meso form is a diastereomer of the other forms.

(natural) tartaric acid
L-(+)-tartaric acid
dextrotartaric acid

D-(−)-tartaric acid
levotartaric acid

mesotartaric acid

DL-tartaric acid
"racemic acid"

The families of 4, 5 and 6 carbon carbohydrates contain many diastereomers because of the large numbers of asymmetric centres in these molecules.


As stated, two diastereomers will not have identical chemical properties. This knowledge is harnessed in chiral synthesis to separate a mixture of enantiomers. This is the principle behind chiral resolution. After preparing the diastereomers, they are separated by chromatography or recrystallization. Note also the example of the stereochemistry of ketonization of enols and enolates.

See also


  1. ^ IUPAC "Gold Book" diastereoisomerism  doi:10.1351/goldbook.D01679
  2. ^ Garrett, R.H.; Grisham, C.M. (2005), Biochemistry 3rd ed., Belmont CA: Thomson, p. 205,  .
  3. ^ IUPAC "Gold Book" enantiomer  doi:10.1351/goldbook.E02069
  4. ^ Modern physical organic chemistry Eric V. Anslyn,Dennis A. Dougherty 2006
  5. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version:  (2006–) "erythro, threo".
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.