World Library  
Flag as Inappropriate
Email this Article

Enoxolone

Article Id: WHEBN0001951102
Reproduction Date:

Title: Enoxolone  
Author: World Heritage Encyclopedia
Language: English
Subject: Hydroxycorticosteroids, Aminoglutethimide, ATC code D03, Antenatal steroid, Cloprednol
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Enoxolone

Enoxolone
Systematic (IUPAC) name
(2S,4aS,6aS,6bR,8aR,10S,12aS,12bR,14bR)-10-hydroxy-2,4a,6a,6b,9,9,12a-heptamethyl-13-oxo-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-2-carboxylic acid
Clinical data
Trade names Arthrodont, PruClair
AHFS/Drugs.com
Legal status
Routes of
administration
Oral, topical
Identifiers
CAS Registry Number
ATC code D03
PubChem CID:
ChemSpider
ChEBI
ChEMBL
Chemical data
Formula C30H46O4
Molecular mass 470.6838

Enoxolone (INN, BAN; also known as glycyrrhetinic acid or glycyrrhetic acid) is a pentacyclic triterpenoid derivative of the beta-amyrin type obtained from the hydrolysis of glycyrrhizic acid, which was obtained from the herb liquorice. It is used in flavoring and it masks the bitter taste of drugs like aloe and quinine. It is effective in the treatment of peptic ulcer and also has expectorant (antitussive) properties.[1] It has some additional pharmacological properties including antiviral, antifungal, antiprotozoal, and antibacterial activities.[2][3][4][5]

Contents

  • Mechanism of action 1
  • Derivatives 2
  • References 3
  • Further reading 4

Mechanism of action

Glycyrrhetinic acid inhibits the enzymes (15-hydroxyprostaglandin dehydrogenase and delta-13-prostaglandin) that metabolize the prostaglandins PGE-2 and PGF-2α to their respective 15-keto-13,14-dihydro metabolites which are inactive. This causes an increased level of prostaglandins in the digestive system. Prostaglandins inhibit gastric secretion but stimulate pancreatic secretion and mucous secretion in the intestines and markedly increase intestinal motility. They also cause cell proliferation in the stomach. The effect on gastric acid secretion, promotion of mucous secretion and cell proliferation shows why licorice has potential in treating peptic ulcer.

PGF-2α stimulates activity of the uterus during pregnancy and can cause abortion, therefore, licorice should not be taken during pregnancy.

The structure of glycyrrhetinic acid is similar to that of cortisone. Both molecules are flat and similar at position 3 and 11. This might be the basis for licorice's anti-inflammatory action.

3-β-D-(Monoglucuronyl)-18-β-glycyrrhetinic acid, a metabolite of glycyrrhetinic acid, inhibits the conversion of 'active' cortisol to 'inactive' cortisone in the kidneys. This occurs via inhibition of the enzyme by inhibiting the enzyme 11-β-hydroxysteroid dehydrogenase. As a result, cortisol levels are high within the collecting duct of the kidney. Cortisol has intrinsic mineralocorticoid properties (that is, it acts like aldosterone and increases sodium reabsorption) that work on ENaC channels in the collecting duct. Hypertension develops due to this mechanism of sodium retention. People often have high blood pressure with a low renin and low aldosterone blood level. The increased amounts of cortisol binds to the unprotected, unspecific mineralocorticoid receptors and induce sodium and fluid retention, hypokalaemia, high blood pressure and inhibition of the renin-angiotensin-aldosterone system. Therefore licorice should not be given to patients with a known history of hypertension in doses sufficient to inhibit 11-β-hydroxysteroid dehydrogenase.

Derivatives

Glycyrrhetinic acid derivatives, where R is a variable functional group

In glycyrrhetinic acid, the functional group (R) is a hydroxyl group. Research in 2005 demonstrated that with a proper functional group a very effective glycyrrhetinic artificial sweetener can be obtained.[6] When R is an anionic NHCO(CH2)CO2K side chain, the sweetening effect is found to 1200 times that of sugar (human sensory panel data). A shorter or longer spacer reduces the sweetening effect. One explanation is that the taste bud cell receptor has 1.3 nanometers (13 angstroms) available for docking with the sweetener molecule. In addition the sweetener molecule requires three proton donor positions of which two reside at the extremities to be able to interact efficiently with the receptor cavity.

A synthetic analog, carbenoxolone, was developed in Britain. Both glycyrrhetinic acid and carbenoxolone have a modulatory effect on neural signaling through gap junction channels.

Acetoxolone, the acetyl derivative of glycyrrhetinic acid, is a drug used in the treatment of peptic ulcer and gastroesophageal reflux disease.

References

  1. ^ Chandler, RF (1985). "Liquorice, more than just a flavour". Canadian Pharmaceutical Journal (118): 420–4. 
  2. ^ Badam, L., Amagaya, S. and Pollard, B. (1997). "In vitro activity of licorice and glycyrrhetinic acid on Japanese encephalitis virus.". J. Community Dis. 29: 91–99. 
  3. ^ Fuji, H.Y., Tian, J. and Luka, C. (1986). "Effect of glycyrrhetinic acid on influenza virus and pathogenic bacteria.". Bull. Chin. Mater. Med. 11: 238–241. 
  4. ^ Guo, N., Takechi, M. and Uno, C. (1991). "Protective effect of glycyrrhizine in mice with systemic Candida albicans infection and its mechanism". J. Pharm. Pharmacol. 12 (5): 380–383.  
  5. ^ Salari, M. H., Sohrabi, N., Kadkhoda, Z., and Khalili, M. B. (2003). "Antibacterial effects of Enoxolone on periodontopathogenic and capnophilic bacteria isolated from specimens of periodontitis patients". Iran. Biomed. J. 7: 39–42. 
  6. ^ Ijichi, So; Seizo Tamagaki (2005). "Molecular Design of Sweet Tasting Compounds Based on 3β-Amino-3β-deoxy-18β-glycyrrhetinic Acid: Amido Functionality Eliciting Tremendous Sweetness". Chemistry Letters 34 (3): 356.  

Further reading

  • Saponin Glycosides, by Georges-Louis Friedli, URL accessed Sept 2010.
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.