World Library  
Flag as Inappropriate
Email this Article

Evolution of the eye

Article Id: WHEBN0005645086
Reproduction Date:

Title: Evolution of the eye  
Author: World Heritage Encyclopedia
Language: English
Subject: Paleontology, Evolution of the opposed cerebral hemisphere control, Evolution of the opposite cerebral hemisphere control, Eye, Evolution of color vision
Collection: Evolution by Phenotype, Eye
Publisher: World Heritage Encyclopedia

Evolution of the eye

Major stages in the evolution of the eye.

The evolution of the eye has been a subject of significant study, as a distinctive example of an

  • "Evolution of the Eye". WGBH Educational Foundation and Clear Blue Sky Productions. PBS. 2001. 
  • Creationism Disproved? Video from the National Center for Science Education on the evolution of the eye
  • Special Issue: Evolution and EyesEvolution: Education and Outreach volume 1, number 4, October 2008, pages 351-559. ISSN 1936-6426 (Print) 1936-6434 (Online)

External links

See also

  • Lamb TD, Collin SP, Pugh EN (December 2007). "Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup". Nat. Rev. Neurosci. 8 (12): 960–76.   Illustration. Review
  • Lamb TD (2011) Evolution of the Eye Scientific American, 305: 64–69.
  • Land, M. F., & Nilsson, D-E, Animal Eyes, Oxford: Oxford University Press, 2002 ISBN 0-19-850968-5 "The origin of vision", Chapter 1, pages 1–15
  • Journal Evolution: Education and Outreach Volume 1, Number 4 / October 2008. Special Issue: The Evolution of Eyes. 26 articles, free access.
  • Ivan R. Schwab (2012). Evolution's Witness: How Eyes Evolved. New York: Oxford University Press.  
  • Hayakawa S, Takaku Y, Hwang JS, Horiguchi T, Suga H, Gehring W, et al. (2015). "Function and evolutionary origin of unicellular camera-type eye structure". PLoS ONE 10 (3): e0118415.  
  • Greuet, C (1968). "Organisation ultrastructurale de l’ocelle de deux Peridiniens Warnowiidae, Erythropsis pavillardi Kofoid et Swezy et Warnowia pulchra Schiller". Protistologica 4: 209–230. 
  • Gregory S. Gavelis, Shiho Hayakawa, Richard A. White III, Takashi Gojobori, Curtis A. Suttle, Patrick J. Keeling, Brian S. Leander (2015). "Eye-like ocelloids are built from different endosymbiotically acquired components". Nature.  

Further reading

  1. ^ Land, M.F. and Nilsson, D.-E., Animal Eyes, Oxford University Press, Oxford (2002).
  2. ^ Lee M.S.Y., Jago, J.B., Garcia-Bellido, D.C., Edgecombe, G.E., Gehling, J.G, Paterson, J.R. 2011. Modern optics in exceptionally preserved eyes of Early Cambrian arthropods from Australia. Nature 474: 631-634
  3. ^ a b Darwin, Charles (1859). On the Origin of Species. London: John Murray.
  4. ^ Gehring WJ (2005). "New perspectives on eye development and the evolution of eyes and photoreceptors". J. Hered. 96 (3): 171–84.  
  5. ^ Nilsson, D.-E. 2013. Eye evolution and its functional basis. Visual Neuroscience 30:5-20
  6. ^ a b Nilsson, D.-E., and S. Pelger. 1994. A pessimistic estimate of the time required for an eye to evolve. Proceedings of the Royal Society B: Biological Sciences 256:53-58
  7. ^ Young, G. C. 2008. Early evolution of the vertebrate eye – fossil evidence. Evo Edu Outreach 1:427-438
  8. ^ Parker, A. R. (2009). "On the origin of optics". Optics & Laser Technology 43 (2): 323–329.  
  9. ^ Parker, Andrew (2003). In the Blink of an Eye: How Vision Sparked the Big Bang of Evolution. Cambridge, MA: Perseus Pub.  
  10. ^ a b Nilsson, D-E; Pelger S (1994). "A pessimistic estimate of the time required for an eye to evolve".  
  11. ^ Nilsson, D. E. (1996). "Eye ancestry: old genes for new eyes". Current biology : CB 6 (1): 39–42.  
  12. ^ Zinovieva, R.; Piatigorsky, J.; Tomarev, S. I. (1999). "O-Crystallin, arginine kinase and ferritin from the octopus lens". Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 1431 (2): 512–517.  
  13. ^ a b Scotland, R. W. (2010). "Deep homology: A view from systematics". BioEssays 32 (5): 438–449.  
  14. ^ Yoshida, Masa-aki; Yura, Kei; Ogura, Atsushi (5 March 2014). "Cephalopod eye evolution was modulated by the acquisition of Pax-6 splicing variants". Scientific Reports ( 4.  
  15. ^ Halder, G.; Callaerts, P.; Gehring, W. J. (1995). "New perspectives on eye evolution". Current opinion in genetics & development 5 (5): 602–609.  
  16. ^ Halder, G.; Callaerts, P.; Gehring, W. (1995). "Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila". Science 267 (5205): 1788–92.  
  17. ^ Tomarev, S. I.; Callaerts, P.; Kos, L.; Zinovieva, R.; Halder, G.; Gehring, W.; Piatigorsky, J. (1997). "Squid Pax-6 and eye development". Proceedings of the National Academy of Sciences of the United States of America 94 (6): 2421–2426.  
  18. ^ a b Gehring, W. J. (13 January 2005). "New Perspectives on Eye Development and the Evolution of Eyes and Photoreceptors" (Full text). Journal of Heredity (Oxford Journals) 96 (3): 171–184.  
  19. ^ a b c d e f g h M F Land; R D Fernald (1992). "The Evolution of Eyes". Annual Review of Neuroscience 15: 1–29.  
  20. ^ Autrum, H (1979). "Introduction". In H. Autrum (editor). Comparative Physiology and Evolution of Vision in Invertebrates- A: Invertebrate Photoreceptors. Handbook of Sensory Physiology. VII/6A. New York: Springer-Verlag. pp. 6–9.  
  21. ^ Eye-Evolution?
  22. ^ a b Fernald, Russell D. (2001). The Evolution of Eyes: How Do Eyes Capture Photons? Karger Gazette 64: "The Eye in Focus".
  23. ^ Conway-Morris, S. (1998). The Crucible of Creation. Oxford: Oxford University Press.
  24. ^ Dawkins, Richard (1986). The Blind Watchmaker.
  25. ^ a b c Schoenemann, B.; Liu, J. N.; Shu, D. G.; Han, J.; Zhang, Z. F. (2008). "A miniscule optimized visual system in the Lower Cambrian". Lethaia 42 (3): 265.  
  26. ^ Ali, M.A. and M. A. Klyne. 1985. Vision in vertebrates. New York: Plenum Press
  27. ^ Fernald, Russell D. (2001). The Evolution of Eyes: Why Do We See What We See? Karger Gazette 64: "The Eye in Focus".
  28. ^ Fernald, Russell D. (1998). Aquatic Adaptations in Fish Eyes. New York, Springer.
  29. ^ Fernald RD (1997). "The evolution of eyes". Brain Behav. Evol. 50 (4): 253–9.  
  30. ^ a b Slingsby, C., G. J. Wistow, and A. R. Clark. 2013. Evolution of crystallins for a role in the vertebrate eye lens. Protein Science 22:367-380
  31. ^ Fernald, Russell D. (2001). The Evolution of Eyes: Where Do Lenses Come From? Karger Gazette 64: "The Eye in Focus".
  32. ^ Ali, Mohamed Ather; Klyne, M.A. (1985). Vision in Vertebrates. New York: Plenum Press. p. 1.  
  33. ^ a b Osorio, D; Vorobyev, M (2005). "Photoreceptor spectral sensitivities in terrestrial animals: adaptations for luminance and colour vision". Proc. R. Soc. B. 
  34. ^ Menzel, Randolf (1979). "Spectral Sensitivity and Color Vision in Invertebrates". In H. Autrum (editor). Comparative Physiology and Evolution of Vision in Invertebrates- A: Invertebrate Photoreceptors. Handbook of Sensory Physiology. VII/6A. New York: Springer-Verlag. pp. 504–506; 551–558.  
  35. ^ a b Cronin, T; Shashar, N; Caldwell, R; Marshall, J; Cheroske, A; Chiou, T (2003). "Polarization vision and its role in biological signaling". Integr. Comp. Biol. 
  36. ^ Malstrom, T; Kroger, R (2006). "pupil shape and lens optics in the eyes of terrestrial vertebrates". The Journal of Experimental Biology. 
  37. ^ "Carnivores". U.S. Department of the Interior, Bureau of Land Management. 2009-12-14. Retrieved 2011-03-28. 
  38. ^ Boroditsky, Lera (1999-06-24). "Light & Eyes: Lecture Notes". Lecture Notes.  
  39. ^ Dr. Michael Shermer, as quoted by Christopher Hitchens in his book "God is Not Great" (pg.82)
  40. ^ Reichenbach A, Bringmann A. (2010). Müller cells in the healthy and diseased retina. New York: Springer. pp 15 - 20.
  41. ^
  42. ^ Diagrammatic representation of disc shedding and phagosome retrieval into the pigment epithelial cell.[2]


  1. ^ David Berlinski, an intelligent design proponent, questioned the basis of the calculations, and the author of the original paper refuted Berlinski's criticism.
    • Nilsson, Dan-E. "Beware of Pseudo-science: a response to David Berlinski's attack on my calculation of how long it takes for an eye to evolve". 
    • "Evolution of the Eye" on PBS
  2. ^ The precise number varies from author to author.


The camera eyes of cephalopods, in contrast, are constructed the "right way out", with the nerves attached to the rear of the retina. This means that they do not have a blind spot. This difference may be accounted for by the origins of eyes; in cephalopods they develop as an invagination of the head surface whereas in vertebrates they originate as an extension of the brain.

The eyes of many taxa record their evolutionary history in their contemporary anatomy. The vertebrate eye, for instance, is built "backwards and upside down", requiring "photons of light to travel through the cornea, lens, aqueous fluid, blood vessels, ganglion cells, amacrine cells, horizontal cells, and bipolar cells before they reach the light-sensitive rods and cones that transduce the light signal into neural impulses, which are then sent to the visual cortex at the back of the brain for processing into meaningful patterns."[39] While such a construct has some drawbacks, it also allows the outer retina of the vertebrates to sustain higher metabolic activities as compared to the non-inverted design.[40] It also allowed for the evolution of the choroid layer, including the retinal pigment epithelial (RPE) cells, which play an important role in protecting the photoreceptive cells from photo-oxidative damage.[41][42]

Vertebrates and octopuses developed the camera eye independently. In the vertebrate version the nerve fibers pass in front of the retina, and there is a blind spot where the nerves pass through the retina. In the vertebrate example, 4 represents the blind spot, which is notably absent from the octopus eye. In vertebrates, 1 represents the retina and 2 is the nerve fibers, including the optic nerve (3), whereas in the octopus eye, 1 and 2 represent the nerve fibers and retina respectively.

Evolutionary baggage

Prey generally have eyes on the sides of their head so to have a larger field of view, from which to avoid predators. Predators, however, have eyes in front of their head in order to have better depth perception.[37][38] Flatfish are predators which lie on their side on the bottom, and have eyes placed asymmetrically on the same side of the head. A transitional fossil from the common symmetric position is Amphistium.


By utilizing the iris sphincter muscle, some species move the lens back and forth, some stretch the lens flatter. Another mechanism regulates focusing chemically and independently of these two, by controlling growth of the eye and maintaining focal length. In addition, the pupil shape can be used to predict the focal system being utilized. A slit pupil can indicate the common multifocal system, while circle pupil usually specifies a monofocal system. When using a circlular form, the pupil will constrict under bright light, increasing the focal length, and will dilate when dark in order to decrease the depth of focus.[36] Note that a focusing method is not a requirement. As photographers know, focal errors increase as aperture increases. Thus, countless organisms with small eyes are active in direct sunlight and survive with no focus mechanism at all. As a species grows larger, or transitions to dimmer environments, a means of focusing need only appear gradually.

Focusing mechanism

[35] As discussed earlier, the properties of light under water differ from those in air. One example of this is the polarization of light.

Polarization vision

Five classes of visual photopigmentations are found in vertebrates. All but one of these developed prior to the divergence of cyclostomes and fish.[33] Various adaptations within these five classes give rise to suitable eyes depending on the spectrum encountered. As light travels through water, longer wavelengths, such as reds and yellows, are absorbed more quickly than the shorter wavelengths of the greens and blues. This can create a gradient of light types as the depth of water increases. The visual receptors in fish are more sensitive to the range of light present in their habitat level. However, this phenomenon does not occur in land environments, creating little variation in pigment sensitivities among terrestrial vertebrates. The homogenous nature of the pigment sensitivities directly contributes to the significant presence of communication colors.[33] This presents distinct selective advantages, such as better recognition of predators, food, and mates. Indeed, it is thought that simple sensory-neural mechanisms may selectively control general behaviour patterns, such as escape, foraging, and hiding. Many examples of wavelength-specific behaviour patterns have been identified, in two primary groups: less than 450 nm, associated with natural light sources, and greater than 450 nm, associated with reflected light sources.[34] As opsin molecules were subtly fine-tuned to detect different wavelengths of light, at some point color vision developed when photoreceptor cells developed multiple pigments.[22] As a chemical adaption rather than a mechanical one, this may have occurred at any of the early stages of the eye's evolution, and the capability may have disappeared and reappeared as organisms became predator or prey. Similarly, night and day vision emerged when receptors differentiated into rods and cones, respectively.

Color vision

Other developments

Independently, a transparent layer and a nontransparent layer may split forward from the lens: a separate [32]

It is biologically difficult to maintain a transparent layer of cells. Deposition of transparent, nonliving, material eased the need for nutrient supply and waste removal. crystallin. A gap between tissue layers naturally forms a biconvex shape, which is optically and mechanically ideal for substances of normal refractive index. A biconvex lens confers not only optical resolution, but aperture and low-light ability, as resolution is now decoupled from hole size—which slowly increases again, free from the circulatory constraints.

[31] which makes the lens useful is caused by the radial shift in crystallin concentration in different parts of the lens, rather than by the specific type of protein: it is not the presence of crystallin, but the relative distribution of it, that renders the lens useful.gradient refractive index The [30] Vertebrate

Compound eye of Antarctic krill

Note that this optical layout has not been found, nor is it expected to be found. Fossilization rarely preserves soft tissues, and even if it did, the new humour would almost certainly close as the remains desiccated, or as sediment overburden forced the layers together, making the fossilized eye resemble the previous layout.

The development of the lens in camera-type eyes probably followed a different trajectory. The transparent cells over a pinhole eye's aperture split into two layers, with liquid in between. The liquid originally served as a circulatory fluid for oxygen, nutrients, wastes, and immune functions, allowing greater total thickness and higher mechanical protection. In addition, multiple interfaces between solids and liquids increase optical power, allowing wider viewing angles and greater imaging resolution. Again, the division of layers may have originated with the shedding of skin; intracellular fluid may infill naturally depending on layer depth.

[25] A subsequent increase of the lens's refractive index probably resulted in an in-focus image being formed.[25] The focal length of an early [6] In a lensless eye, a distant point of light enters and hits the back of the eye with about the same size as when it entered. Adding a lens to the eye directs this incoming light onto a smaller surface area, without reducing the intensity of the stimulus.

Light from a distant object and a near object being focused by changing the curvature of the lens

Lens formation and diversification

It is likely that a key reason eyes specialize in detecting a specific, narrow range of wavelengths on the electromagnetic spectrum—the visible spectrum—is because the earliest species to develop photosensitivity were aquatic, and only two specific wavelength ranges of electromagnetic radiation, blue and green visible light, can travel through water. This same light-filtering property of water also influenced the photosensitivity of plants.[27][28][29]

Overgrowths of transparent cells prevented contamination and parasitic infestation. The chamber contents, now segregated, could slowly specialize into a transparent humour, for optimizations such as colour filtering, higher Onychophorans where the cuticula of the shell continues to the cornea. The cornea is composed of either one or two cuticular layers depending on how recently the animal has moulted.[25] Along with the lens and two humors, the cornea is responsible for converging light and aiding the focusing of it on the back of the retina. The cornea protects the eyeball while at the same time accounting for approximately 2/3 of the eye’s total refractive power.[26]

After the photosensitive cell region invaginated, there came a point when reducing the width of the light opening became more efficient at increasing visual resolution than continued deepening of the cup.[10] By reducing the size of the opening, organisms achieved true imaging, allowing for fine directional sensing and even some shape-sensing. Eyes of this nature are currently found in the nautilus. Lacking a cornea or lens, they provide poor resolution and dim imaging, but are still, for the purpose of vision, a major improvement over the early eyepatches.[24]

The primitive nautilus eye functions similarly to a pinhole camera.

During the Cambrian explosion, the development of the eye accelerated rapidly, with radical improvements in image-processing and detection of light direction.[23]

When a photon is absorbed by the chromophore, a chemical reaction causes the photon's energy to be transduced into electrical energy and relayed, in higher animals, to the nervous system. These photoreceptor cells form part of the retina, a thin layer of cells that relays visual information,[22] including the light and day-length information needed by the circadian rhythm system, to the brain. However, some jellyfish, such as Cladonema, have elaborate eyes but no brain. Their eyes transmit a message directly to the muscles without the intermediate processing provided by a brain.[18]

These complex optical systems started out as the multicellular eyepatch gradually depressed into a cup, which first granted the ability to discriminate brightness in directions, then in finer and finer directions as the pit deepened. While flat eyepatches were ineffective at determining the direction of light, as a beam of light would activate exactly the same patch of photo-sensitive cells regardless of its direction, the "cup" shape of the pit eyes allowed limited directional differentiation by changing which cells the lights would hit depending upon the light's angle. Pit eyes, which had arisen by the Cambrian period, were seen in ancient snails, and are found in some snails and other invertebrates living today, such as planaria. Planaria can slightly differentiate the direction and intensity of light because of their cup-shaped, heavily pigmented retina cells, which shield the light-sensitive cells from exposure in all directions except for the single opening for the light. However, this proto-eye is still much more useful for detecting the absence or presence of light than its direction; this gradually changes as the eye's pit deepens and the number of photoreceptive cells grows, allowing for increasingly precise visual information.[21]

The planarian has "cup" eyespots that can slightly distinguish light direction.

Developing an optical system that can discriminate the direction of light to within a few degrees is apparently much more difficult, and only six of the thirty-some phyla[note 2] possess such a system. However, these phyla account for 96% of living species.[19]

The basic light-processing unit of eyes is the photoreceptor cell, a specialized cell containing two types of molecules in a membrane: the opsin, a light-sensitive protein, surrounding the chromophore, a pigment that distinguishes colors. Groups of such cells are termed "eyespots", and have evolved independently somewhere between 40 and 65 times. These eyespots permit animals to gain only a very basic sense of the direction and intensity of light, but not enough to discriminate an object from its surroundings.[19]

Early eyes

This suggests that when the two lineages diverged in the Precambrian, they had only very primitive light receptors, which developed into more complex eyes independently.

The functional unit of the eye is the receptor cell, which contains the opsin proteins and responds to light by initiating a nerve impulse. The light sensitive opsins are borne on a hairy layer, to maximise the surface area. The nature of these "hairs" differs, with two basic forms underlying photoreceptor structure: microvilli and cilia.[20] In the protostomes, they are microvilli: extensions or protrusions of the cellular membrane. But in the deuterostomes, they are derived from cilia, which are separate structures.[19] The actual derivation may be more complicated, as some microvilli contain traces of cilia — but other observations appear to support a fundamental difference between protostomes and deuterostomes.[19] These considerations centre on the response of the cells to light – some use sodium to cause the electric signal that will form a nerve impulse, and others use potassium; further, protostomes on the whole construct a signal by allowing more sodium to pass through their cell walls, whereas deuterostomes allow less through.[19]

At a cellular level, there appear to be two main "designs" of eyes, one possessed by the protostomes (molluscs, annelid worms and arthropods), the other by the deuterostomes (chordates and echinoderms).[19]

Vision itself relies on a basic biochemistry which is common to all eyes. However, how this biochemical toolkit is used to interpret an organism's environment varies widely: eyes have a wide range of structures and forms, all of which have evolved quite late relative to the underlying proteins and molecules.[19]

The earliest predecessors of the eye were photoreceptor proteins that sense light, found even in unicellular organisms, called "photosynthesis,[19] and to predict day and night, the primary function of circadian rhythms. Visual pigments are located in the brains of more complex organisms, and are thought to have a role in synchronising spawning with lunar cycles. By detecting the subtle changes in night-time illumination, organisms could synchronise the release of sperm and eggs to maximise the probability of fertilisation.

The stigma (2) of the euglena hides a light-sensitive spot.

Stages of eye evolution

Sensory organs probably evolved before the brain did—there is no need for an information-processing organ (brain) before there is information to process.[18]

[13] These high-level genes are, by implication, much older than many of the structures that they are today seen to control; they must originally have served a different purpose, before being co-opted for a new role in eye development.[17][16][15].fruit flies to mice to [14] Shared traits common to all light-sensitive organs include the family of photo-receptive proteins called

Whether one considers the eye to have evolved once or multiple times depends somewhat on the definition of an eye. Much of the genetic machinery employed in eye development is common to all eyed organisms, which may suggest that their ancestor utilized some form of light-sensitive machinery – even if it lacked a dedicated optical organ. However, even photoreceptor cells may have evolved more than once from molecularly similar chemoreceptors, and photosensitive cells probably existed long before the Cambrian explosion.[11] Higher-level similarities – such as the use of the protein crystallin in the independently derived cephalopod and vertebrate lenses[12] – reflect the co-option of a protein from a more fundamental role to a new function within the eye.[13]

One origin or many?

It is difficult to estimate the rate of eye evolution because the fossil record, particularly of the Early Cambrian, is poor. The evolution of a circular patch of photoreceptor cells into a fully functional vertebrate eye has been approximated based on rates of mutation, relative advantage to the organism, and natural selection. Based on pessimistic calculations that consistently overestimate the time required for each stage and a generation time of one year, which is common in small animals, it has been proposed that it would take less than 364,000 years for the vertebrate eye to evolve from a patch of photoreceptors.[10][note 1]

The first fossils of eyes that have been found to date are from the lower Cambrian period (about ).[8] This period saw a burst of apparently rapid evolution, dubbed the "Cambrian explosion". One of the many hypotheses for "causes" of this diversification, the "Light Switch" theory of Andrew Parker, holds that the evolution of eyes initiated an arms race that led to a rapid spate of evolution.[9] Earlier than this, organisms may have had use for light sensitivity, but not for fast locomotion and navigation by vision.

Rate of evolution

Modern researchers have been putting forth work on the topic. D.E. Nilsson has independently put forth four theorized general stages in the evolution of a vertebrate eye from a patch of photoreceptors.[5] Nilsson and S. Pelger published a classical paper theorizing how many generations are needed to evolve a complex eye in vertebrates.[6] Another researcher, G.C. Young, has used fossil evidence to infer evolutionary conclusions, based on the structure of eye orbits and openings in fossilized skulls for blood vessels and nerves to go through.[7] All this evidence adds to the growing amount of evidence that supports Darwin's theory.

He suggested a gradation from "an optic nerve merely coated with pigment, and without any other mechanism" to "a moderately high stage of perfection", giving examples of extant intermediate grades of evolution.[3] Darwin's suggestions were soon shown to be correct, and current research is investigating the genetic mechanisms responsible for eye development and evolution.[4]

...if numerous gradations from a simple and imperfect eye to one complex and perfect can be shown to exist, each grade being useful to its possessor, as is certainly the case; if further, the eye ever varies and the variations be inherited, as is likewise certainly the case and if such variations should be useful to any animal under changing conditions of life, then the difficulty of believing that a perfect and complex eye could be formed by natural selection, though insuperable by our imagination, should not be considered as subversive of the theory.[3]

In 1802, philosopher William Paley called it a miracle of "design". Charles Darwin himself wrote in his Origin of Species, that the evolution of the eye by natural selection at first glance seemed "absurd in the highest possible degree". However, he went on to explain that despite the difficulty in imagining it, this was perfectly feasible:

The human eye, demonstrating the iris

History of research


  • History of research 1
  • Rate of evolution 2
  • One origin or many? 3
  • Stages of eye evolution 4
    • Early eyes 4.1
    • Lens formation and diversification 4.2
    • Other developments 4.3
      • Color vision 4.3.1
      • Polarization vision 4.3.2
      • Focusing mechanism 4.3.3
      • Location 4.3.4
  • Evolutionary baggage 5
  • Footnotes 6
  • References 7
  • Further reading 8
  • See also 9
  • External links 10

Complex eyes appear to have first evolved within a few million years, in the rapid burst of evolution known as the visual acuity, the range of wavelengths they can detect, their sensitivity in low light levels, their ability to detect motion or resolve objects, and whether they can discriminate colours.


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.