World Library  
Flag as Inappropriate
Email this Article

Flight control modes (electronic)

Article Id: WHEBN0023658272
Reproduction Date:

Title: Flight control modes (electronic)  
Author: World Heritage Encyclopedia
Language: English
Subject: Wingbox, Aerospace engineering, Droop (aeronautics), Spoileron, Dog-tooth
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Flight control modes (electronic)

Flight control modes (electronic)
Modern aircraft designs like this Boeing 777 rely on sophisticated flight computers to aid and protect the aircraft in flight. These are governed by computational laws which assign flight control modes during flight

Aircraft with fly-by-wire flight controls require computer controlled flight control modes that are capable of determining the operational mode (computational law) of the aircraft.[1][2]

A reduction of electronic flight control can be caused by the failure of a computational device, such as the flight control computer or an information providing device, such as the ADIRU.

Electronic flight control systems (EFCS) also provide augmentation in normal flight, such as increased protection of the aircraft from overstress or providing a more comfortable flight for passengers by recognizing and correcting for turbulence and providing yaw damping.

Two aircraft manufacturers produce commercial passenger aircraft with primary flight computers that can perform under different flight control modes (or laws). The most well-known are the normal, alternate, direct and mechanical laws of the Airbus A320-A380.[1]

Boeing's fly-by-wire system is used in the Boeing 777, Boeing 787 Dreamliner and Boeing 747-8.[2][3]

These newer generation of aircraft use the lighter weight electronic systems to increase safety and performance while lowering aircraft weight. Since these systems can also protect the aircraft from overstress situations, the designers can therefore reduce over-engineered components, further reducing weight.

Flight control laws (Airbus)

A330-200 in flight mode
Airbus aircraft designs after the A300/A310 are almost completely controlled by fly-by-wire equipment. These newer aircraft, including the A320, A330, A340, A350 and A380 operate under Airbus flight control laws.[4] The flight controls on the Airbus A330, for example, are all electronically controlled and hydraulically activated. Some surfaces, such as the rudder, can also be mechanically controlled. In normal flight, the computers act to prevent excessive forces in pitch and roll.[4]
Airbus A321 Cockpit
Illustration of the Air-data reference system on Airbus A330

The aircraft is controlled by three primary control computers (captain's, first officer's, and standby) and two secondary control computers (captain's and first officer's). In addition there are two flight control data computers (FCDC) that read information from the sensors, such as air data (airspeed, altitude). This is fed along with GPS data, into three redundant processing units known as air data inertial reference units (ADIRUs) that act both as an air data reference and inertial reference. ADIRUs are part of the air data inertial reference system, which, on the Airbus is linked to eight air data modules: three are linked to pitot tubes and five are linked to static sources. Information from the ADIRU is fed into one of several flight control computers (primary and secondary flight control). The computers also receive information from the control surfaces of the aircraft and from the pilots aircraft control devices and autopilot. Information from these computers is sent both to the pilot's primary flight display and also to the control surfaces.

There are four named flight control laws, however alternate law consists of two modes, alternate law 1 and alternate law 2. Each of these modes have different sub modes: ground mode, flight mode and flare, plus a back-up mechanical law.[4]

Normal law

Normal law differs depending on the stage of flight. These include:

  • Stationary at the gate
  • Taxiing from the gate to a runway or from a runway back to the gate
  • Beginning the take-off roll
  • Initial climb
  • Cruise climb and cruise flight at altitude
  • Final descent, flare and landing.

During the transition from take-off to cruise there is a 5 second transition, from descent to flare there is a two second transition, and from flare to ground there is another 2 second transition in normal law.[4]

Ground mode

The aircraft behaves as in direct mode: the autotrim feature is turned off and there is a direct response of the elevators to the sidestick inputs. The horizontal stabilizer is set to 4° up but manual settings (e.g. for center of gravity) override this setting. After the wheels leave the ground, a 5 second transition occurs where normal law – flight mode takes over from ground mode.[4]

Flight mode

The flight mode of normal law provides five types of protection: pitch attitude, load factor limitations, high speed, high-AOA and bank angle. Flight mode is operational from take-off, until shortly before the aircraft lands, around 100 feet above ground level. It can be lost prematurely as a result of pilot commands or system failures. Loss of normal law as a result of a system failure results in alternate law 1 or 2.[5]

Unlike conventional controls, in normal law – flight mode the sidestick provides a load factor proportional to stick deflection which is independent of aircraft speed. When the stick is neutral and the load factor is 1g the aircraft remains in level flight without the pilot changing the elevator trim. The aircraft also maintains a proper pitch angle once a turn has been established, up to 33° bank. The system prevents further trim up when the angle of attack is excessive, the load factor exceeds 1.3g or when the bank angle exceeds 33°.

Alpha protection (α-Prot) prevents stalling and the effects of windshear. The protection engages when the angle of attack is between α-Prot and α-Max and limits the angle of attack commanded by the pilot's sidestick or, if autopilot is engaged, it disengages the autopilot.

High speed protection will automatically recover from an overspeed. There are two speed limitations for high altitude aircraft, VMO (maximum operational velocity) and MMO (maximum operational Mach) the two speeds are the same at approximately 31,000 feet, below which overspeed is determined by VMO and above which by MMO.

Flare mode

A380 in take off

This mode is automatically engaged when the radar altimeter indicates 100 feet above ground. At 50 feet the aircraft trims the nose slightly down. During the flare, normal law provides high-AOA protection and bank angle protection. The load factor is permitted to be from 2.5g to −1g, or 2.0g to 0g when slats are extended. Pitch attitude is limited from −15° to +30°, and upper limit is further reduced to +25° as the aircraft slows.[4]

Alternate law

There are four reconfiguration modes for the Airbus fly-by-wire aircraft: alternate law 1, alternate law 2, direct law and mechanical law. The ground mode and flare modes for alternate law are identical to those modes for normal law.

Alternate law 1 (ALT1) mode combines a normal law lateral mode with the load factor, bank angle protections retained. High angle of attack protection may be lost and low energy (level flight stall) protection is lost. High speed and high angle of attack protections enter alternative law mode.[5]

ALT1 may be entered if there are faults in the horizontal stabilizer, an elevator, yaw-damper actuation, slat or flap sensor, or a single air data reference fault.[4]

Alternate law 2 (ALT2) loses normal law lateral mode (replaced by roll direct mode and yaw alternate mode) along with pitch attitude protection, bank angle protection and low energy protection. Load factor protection is retained. High angle of attack and high speed protections are retained unless the reason for alternate law 2 mode is the failure of two air-data references or if the two remaining air data references disagree.[5]

ALT2 mode is entered when 2 engines flame out (on dual engine aircraft), faults in two inertial or air-data references, with the autopilot being lost, except with an ADR disagreement. This mode may also be entered with an all spoilers fault, certain ailerons fault, or pedal transducers fault.[4]

Direct law

Direct law (DIR) introduces a direct stick-to-control surfaces relationship:[4] control surface motion is directly related to the sidestick and rudder pedal motion.[1] The trimmable horizontal stabilizer can only be controlled by the manual trim wheel. All protections are lost, but the maximum deflection of the elevators is changed as a function of the aircraft current centre of gravity.

DIR is entered if there is failure of three inertial reference units or the primary flight computers, faults in two elevators, flame-out in two engines (on a two-engine aircraft) or when the captain's primary flight computer is inoperable.[4]

Mechanical law

In the mechanical law back-up mode, pitch is controlled by the mechanical trim system and lateral direction is controlled by the rudder pedals operating the rudder mechanically.[1]

Boeing 777 Primary Flight Control System

The cockpit of the 777 is similar to 747-400, a fly-by-wire control simulating mechanical control

The fly-by-wire electronic flight control system of the Boeing 777 differs from the Airbus EFCS. The design principle is to provide a system that responds similarly to a mechanically controlled system.[6] Because the system is controlled electronically the flight control system can provide flight envelope protection.

The electronic system is subdivided between 2 levels, the 4 actuator control electronics (ACE) and the 3 primary flight computers (PFC). The ACEs control actuators (from those on pilot controls to control surface controls and the PFC). The role of the PFC is to calculate the control laws and provide feedback forces, pilot information and warnings.[6]

Standard protections and augmentations

The flight control system on the 777 is designed to restrict control authority beyond certain range by increasing the back pressure once the desired limit is reached. This is done via electronically controlled backdrive actuators (controlled by ACE). The protections and augmentations are: bank angle protection, turn compensation, stall protection, over-speed protection, pitch control, stability augmentation and thrust asymmetry compensation. The design philosophy is: "to inform the pilot that the command being given would put the aircraft outside of its normal operating envelope, but the ability to do so is not precluded."[6]

Normal mode

In normal mode the PFCs transmit actuator commands to the ACEs, which convert them into analog servo commands. Full functionality is provided, including all enhanced performance, envelope protection and ride quality features.

Secondary mode

Boeing secondary mode is comparable to the Airbus alternate law, with the PFCs supplying commands to the ACEs. However, EFCS functionality is reduced, including loss of flight envelope protection. Like the Airbus system, this state is entered when a number of failures occur in the EFCS or interfacing systems (e.g. ADIRU or SAARU).[2]

References

  1. ^ a b c d "Crossing the Skies » Fly-by-wire and Airbus Laws". 
  2. ^ a b c "The Boeing 777" (powerpoint). by Saurabh Chheda. 
  3. ^ "Avionics Magazine :: Boeing 787: Integration’s Next Step". 
  4. ^ a b c d e f g h i j "Airbus 330 – Systems – Flight Controls". SmartCockpit – Airline training guides, Aviation, Operations, Safety. Retrieved 07-12-2009. 
  5. ^ a b c "Airbus Flight Control Laws". 
  6. ^ a b c "11 Boeing B-777: Fly-By-Wire Flight Controls". Gregg F. Bartley – Boeing. 
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.