World Library  
Flag as Inappropriate
Email this Article

GTP-binding protein regulators

Article Id: WHEBN0009847036
Reproduction Date:

Title: GTP-binding protein regulators  
Author: World Heritage Encyclopedia
Language: English
Subject: Small GTPase, Guanosine nucleotide dissociation inhibitor, Ras-GRF1, Cardiofaciocutaneous syndrome, Chylomicron retention disease
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

GTP-binding protein regulators

GTP-binding protein regulators regulate G proteins in several different ways. Small GTPases act as molecular switches in signaling pathways, which act to regulate functions of other proteins. They are active or 'ON' when it is bound to GTP and inactive or 'OFF' when bound to GDP.[1] Activation and deactivation of small GTPases can be regarded as occurring in a cycle, between the GTP-bound and GDP-bound form, regulated by other regulatory proteins.

Contents

  • Exchangers 1
  • Stimulators 2
  • Inhibitors 3
  • References 4
  • External links 5

Exchangers

The inactive form of GTPases (GDP-form) are activated by a class of proteins called Guanosine nucleotide exchange factors (GEFs). GEFs catalyse nucleotide exchange by encouraging the release of GDP from the small GTPase (by displacement of the small GTPase-associated Mg2+ ion) and GDP's replacement by GTP (which is in at least a 10-fold excess within the cell) . Inactivation of the active small GTPase is achieved through hydrolysis of the GTP by the small GTPase's intrinsic GTP hydrolytic activity.

Stimulators

The rate of GTP hydrolysis for small GTPases is generally too slow to create physiologically relevant transient signals, and thus requires another class of regulatory proteins to accelerate this activity, the GTPase activating proteins (GAPs).

Inhibitors

Another class of regulatory proteins, the Guanosine nucleotide dissociation inhibitors (GDIs), bind to the GDP-bound form of Rho and Rab small GTPases and not only prevent exchange (maintaining the small GTPase in an off-state), but also prevent the small GTPase from localizing at the membrane, which is their place of action.

References

  1. ^ Gerhard Krauss (2008). Biochemistry of signal transduction and regulation. Wiley-VCH. pp. 235–.  

External links

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.