World Library  
Flag as Inappropriate
Email this Article

Intensity (physics)

Article Id: WHEBN0000041993
Reproduction Date:

Title: Intensity (physics)  
Author: World Heritage Encyclopedia
Language: English
Subject: Holography, Photofluorography, Light, Coherence (physics), Planck units
Publisher: World Heritage Encyclopedia

Intensity (physics)

In physics, intensity is the power transferred per unit area. In the SI system, it has units watts per metre squared (W/m2). It is used most frequently with waves (e.g. sound or light), in which case the average power transfer over one period of the wave is used. Intensity can be applied to other circumstances where energy is transferred. For example, one could calculate the intensity of the kinetic energy carried by drops of water from a garden sprinkler.

The word "intensity" as used here is not synonymous with "strength", "amplitude", "magnitude", or "level", as it sometimes is in colloquial speech.

Intensity can be found by taking the energy density (energy per unit volume) at a point in space and multiplying it by the velocity at which the energy is moving. The resulting vector has the units of power divided by area.

Mathematical description

If a point source is radiating energy in all directions (producing a spherical wave), and no energy is absorbed or scattered by the medium, then the intensity decreases in proportion to distance from the object squared. This is an example of the inverse-square law.

Applying the law of conservation of energy, if the net power emanating is constant,

P = \int \bold I\, \cdot \mathrm{d}\bold A,

where P is the net power radiated, I is the intensity as a function of position, and dA is a differential element of a closed surface that contains the source.

If one integrates over a surface of uniform intensity I, for instance over a sphere centered around the point source, the equation becomes

P = |I| \cdot A_\mathrm{surf} = |I| \cdot 4\pi r^2 \,,

where I is the intensity at the surface of the sphere, and r is the radius of the sphere. (A_\mathrm{surf} = 4\pi r^2 is the expression for the surface area of a sphere).

Solving for I gives

|I| = \frac{P}{A_\mathrm{surf}} = \frac{P}{4\pi r^2}.

If the medium is damped, then the intensity drops off more quickly than the above equation suggests.

Anything that can transmit energy can have an intensity associated with it. For an electromagnetic wave, if E is the complex amplitude of the electric field, then the time-averaged energy density of the wave is given by

\left\langle U \right \rangle = \frac{n^2 \epsilon_0}{2} |E|^2 ,

and the intensity is obtained by multiplying this expression by the velocity of the wave, c/n:

I = \frac{c n \epsilon_0}{2} |E|^2,

where n is the refractive index, c is the speed of light in vacuum and \epsilon_0 is the vacuum permittivity.

The treatment above does not hold for electromagnetic fields that are not radiating, such as for an evanescent wave. In these cases, the intensity can be defined as the magnitude of the Poynting vector.[1]

Alternative definitions of "intensity"

In photometry and radiometry intensity has a different meaning: it is the luminous or radiant power per unit solid angle. This can cause confusion in optics, where intensity can mean any of radiant intensity, luminous intensity or irradiance, depending on the background of the person using the term. Radiance is also sometimes called intensity, especially by astronomers and astrophysicists, and in heat transfer.

See also

Table 1. SI photometry units
Quantity Unit Dimension Notes
Name Symbol[nb 1] Name Symbol Symbol
Luminous energy Qv [nb 2] lumen second lm⋅s TJ [nb 3] units are sometimes called talbots
Luminous flux Φv [nb 2] lumen (= cd⋅sr) lm J [nb 3] also called luminous power
Luminous intensity Iv candela (= lm/sr) cd J [nb 3] an SI base unit, luminous flux per unit solid angle
Luminance Lv candela per square metre cd/m2 L−2J units are sometimes called nits
Illuminance Ev lux (= lm/m2) lx L−2J used for light incident on a surface
Luminous emittance Mv lux (= lm/m2) lx L−2J used for light emitted from a surface
Luminous exposure Hv lux second lx⋅s L−2TJ
Luminous energy density ωv lumen second per metre3 lm⋅sm−3 L−3TJ
Luminous efficacy η [nb 2] lumen per watt lm/W M−1L−2T3J ratio of luminous flux to radiant flux
Luminous efficiency V 1 also called luminous coefficient
See also: SI · Photometry · Radiometry · (Compare)
  1. ^ photon quantities. For example: USA Standard Letter Symbols for Illuminating Engineering USAS Z7.1-1967, Y10.18-1967
  2. ^ a b c Alternative symbols sometimes seen: W for luminous energy, P or F for luminous flux, and ρ or K for luminous efficacy.
  3. ^ a b c "J" here is the symbol for the dimension of luminous intensity, not the symbol for the unit joules.
Table 2. SI radiometry units
Quantity Unit Dimension Notes
Name Symbol[nb 1] Name Symbol Symbol
Radiant energy Qe[nb 2] joule J ML2T−2 energy
Radiant flux Φe[nb 2] watt W or J/s ML2T−3 radiant energy per unit time, also called radiant power.
Spectral power Φ[nb 2][nb 3] watt per metre W⋅m−1 MLT−3 radiant power per wavelength.
Radiant intensity Ie watt per steradian W⋅sr−1 ML2T−3 power per unit solid angle.
Spectral intensity I[nb 3] watt per steradian per metre W⋅sr−1⋅m−1 MLT−3 radiant intensity per wavelength.
Radiance Le watt per steradian per square metre W⋅sr−1m−2 MT−3 power per unit solid angle per unit projected source area.

confusingly called "intensity" in some other fields of study.

Spectral radiance L[nb 3]
L[nb 4]
watt per steradian per metre3

watt per steradian per square
metre per hertz

commonly measured in W⋅sr−1⋅m−2⋅nm−1 with surface area and either wavelength or frequency.

Irradiance Ee[nb 2] watt per square metre W⋅m−2 MT−3 power incident on a surface, also called radiant flux density.

sometimes confusingly called "intensity" as well.

Spectral irradiance E[nb 3]
E[nb 4]
watt per metre3
watt per square metre per hertz
commonly measured in W⋅m−2nm−1
or 10−22 W⋅m−2⋅Hz−1, known as solar flux unit.[nb 5]

Radiant exitance /
Radiant emittance
Me[nb 2] watt per square metre W⋅m−2 MT−3 power emitted from a surface.
Spectral radiant exitance /
Spectral radiant emittance
M[nb 3]
M[nb 4]
watt per metre3

watt per square
metre per hertz

power emitted from a surface per unit wavelength or frequency.

Radiosity Je watt per square metre W⋅m−2 MT−3 emitted plus reflected power leaving a surface.
Spectral radiosity J[nb 3] watt per metre3 W⋅m−3 ML−1T−3 emitted plus reflected power leaving a surface per unit wavelength
Radiant exposure He joule per square metre J⋅m−2 MT−2 also referred to as fluence
Radiant energy density ωe joule per metre3 J⋅m−3 ML−1T−2
See also: SI · Radiometry · Photometry · (Compare)
  1. ^ quantities should be denoted with a suffix "e" (for "energetic") to avoid confusion with photometric or photon quantities.
  2. ^ a b c d e Alternative symbols sometimes seen: W or E for radiant energy, P or F for radiant flux, I for irradiance, W for radiant emittance.
  3. ^ a b c d e f Spectral quantities given per unit wavelength are denoted with suffix "λ" (Greek) to indicate a spectral concentration. Spectral functions of wavelength are indicated by "(λ)" in parentheses instead, for example in spectral transmittance, reflectance and responsivity.
  4. ^ a b c Spectral quantities given per unit frequency are denoted with suffix "ν" (Greek)—not to be confused with the suffix "v" (for "visual") indicating a photometric quantity.
  5. ^ NOAA / Space Weather Prediction Center includes a definition of the solar flux unit (SFU).


  1. ^ Paschotta, Rüdiger. "Optical Intensity". Encyclopedia of Laser Physics and Technology. RP Photonics. 
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.