World Library  
Flag as Inappropriate
Email this Article

Johann Hittorf

Article Id: WHEBN0003750218
Reproduction Date:

Title: Johann Hittorf  
Author: World Heritage Encyclopedia
Language: English
Subject: Cathode ray, X-ray, Wilhelm Röntgen, X-ray generator, Crookes tube, History of electrochemistry
Publisher: World Heritage Encyclopedia

Johann Hittorf

Johann Wilhelm Hittorf
Johann Wilhelm Hittorf
Born March 27, 1824
Died November 28, 1914
Nationality Germany
Fields physicist

Johann Wilhelm Hittorf (March 27, 1824 – November 28, 1914) was a German physicist who was born in Bonn and died in Münster, Germany.

Hittorf was the first to compute the electricity-carrying capacity of charged atoms and molecules (ions), an important factor in understanding electrochemical reactions. He formulated ion transport numbers and the first method for their measurements

He observed tubes with energy rays extending from a negative electrode. These rays produced a fluorescence when they hit the glass walls of the tubes. In 1876 the effect was named "cathode rays" by Eugen Goldstein.

Hittorf's early investigations were on the allotropes of phosphorus and selenium. Between 1853 and 1859 his most important work was on ion movement caused by electric current. In 1853 Hittorf pointed out that some ions traveled more rapidly than others. This observation led to the concept of transport number, the fraction of the electric current carried by each ionic species. He measured the changes in the concentration of electrolyzed solutions, computed from these the transport numbers (relative carrying capacities) of many ions, and, in 1869, published his laws governing the migration of ions.

He became professor of physics and chemistry at the University of Münster and director of laboratories there from 1879 until 1889. He also investigated the light spectra of gases and vapours, worked on the passage of electricity through gases, and discovered new properties of cathode rays (electron rays). In 1869 he ascertained that the cathode rays glowed different colours because of different gasses and pressures. He noticed that when there was any object placed between the cathode and the illuminating side of the tube, then the shadow of that object appeared.

His work led toward development of X-rays and cathode ray tubes. The measurement of current in a vacuum tube was an important step towards the creation of a vacuum tube diode.

Further reading

  • Biographical sketch and reprint of paper on migration of ions

External links

  • The Cathode Ray Tube site

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.