World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0008796024
Reproduction Date:

Title: Liquidus  
Author: World Heritage Encyclopedia
Language: English
Subject: Solder, Glass databases, Soldering, Materials science, Lever rule
Publisher: World Heritage Encyclopedia


Liquidus temperature curve in the binary glass system SiO2-Li2O, based on 91 published data collected in SciGlass; model fit from

The liquidus temperature, TL or Tliq specifies the temperature above which a material is completely liquid,[1] and the maximum temperature at which crystals can co-exist with the melt in thermodynamic equilibrium. It is mostly used for impure substances (mixtures) such as glasses, alloys and rocks.

Above the liquidus temperature the material is homogeneous and liquid at equilibrium. Below the liquidus temperature, more and more crystals will form in the melt if one waits a sufficiently long time, depending on the material. Alternately, homogeneous glasses can be obtained through sufficiently fast cooling, i.e., through kinetic inhibition of the crystallization process.

The crystal phase that crystallizes first on cooling a substance to its liquidus temperature is termed primary crystalline phase or primary phase. The composition range within which the primary phase remains constant is known as primary crystalline phase field.

The liquidus temperature is important in the glass industry because crystallization can cause severe problems during the glass melting and forming processes, and it also may lead to product failure.

The liquidus temperature can be contrasted to the solidus temperature. The solidus temperature quantifies the point at which a material completely solidifies (crystallizes). The liquidus and solidus temperatures do not necessarily coincide; if a gap exists between the liquidus and solidus temperatures, then within that gap, the material consists of solid and liquid phases simultaneously (like a slurry).

For pure substances, e.g. pure metal, pure water, etc. the liquidus and solidus are at the same temperature, and the term "melting point" may be used. For impure substances, e.g. alloys, tap water, coca cola, ice cream, etc. the melting point broadens into a melting interval instead. If the temperature is within the melting interval, one may see "slurries" at equilibrium, i.e. the slurry will neither fully solidify nor melt. This is why new snow of high purity either melts or stays solid, while dirty snow on the ground tend to become slushy at certain temperatures. Weld melt pools containing high levels of sulfur, either from melted impurities from the base metal or from the welding electrode, typically have very broad melting intervals, which leads to increased risk of hot cracking.

See also


  1. ^ Askeland, Donald R. & Wright, Wendelin J. (January 14, 2014) [1st. Pub. 2009]. Essentials of Materials Science and Engineering. Cengage Learning. p. 329.  
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.