World Library  
Flag as Inappropriate
Email this Article

Lithium-ion battery

Article Id: WHEBN0000201485
Reproduction Date:

Title: Lithium-ion battery  
Author: World Heritage Encyclopedia
Language: English
Subject: Toyota Prius Plug-in Hybrid, Toyota Prius v, Chevrolet Volt, Electric car, Plug-in electric vehicle
Publisher: World Heritage Encyclopedia

Lithium-ion battery

Lithium-ion battery
A Nokia Li-ion battery used on the Nokia 3310 mobile phone.
Specific energy

100–265 W·h/kg[1][2]

(0.36–0.95 MJ/kg)
Energy density

250–730 W·h/L[2]

(0.90–2.23 MJ/L)
Specific power ~250-~340 W/kg[1]
Charge/discharge efficiency 80–90%[3]
Energy/consumer-price 2.5 W·h/US$
Self-discharge rate 8% at 21 °C
15% at 40 °C
31% at 60 °C
(per month)[4]
Cycle durability

400–1200 cycles

Nominal cell voltage NMC 3.6 / 3.7 V, LiFePO4 3.2 V

A lithium-ion battery (sometimes Li-ion battery or LIB) is a member of a family of rechargeable battery types in which lithium ions move from the negative electrode to the positive electrode during discharge and back when charging. Li-ion batteries use an intercalated lithium compound as one electrode material, compared to the metallic lithium used in a non-rechargeable lithium battery. The electrolyte which allows for ionic movement, and the two electrodes are the consistent components of a lithium-ion cell.

Lithium-ion batteries are common in consumer electronics. They are one of the most popular types of rechargeable batteries for portable electronics, with a high energy density, no memory effect, and only a slow loss of charge when not in use. Beyond consumer electronics, LIBs are also growing in popularity for military, electric vehicle and aerospace applications.[6] For example, lithium-ion batteries are becoming a common replacement for the lead acid batteries that have been used historically for golf carts and utility vehicles. Instead of heavy lead plates and acid electrolyte, the trend is to use lightweight lithium-ion battery packs that can provide the same voltage as lead-acid batteries, so no modification to the vehicle's drive system is required.

Chemistry, performance, cost and safety characteristics vary across LIB types. Handheld electronics mostly use LIBs based on lithium cobalt oxide (LiCoO
), which offers high energy density, but presents safety risks, especially when damaged. Lithium iron phosphate (LFP), lithium manganese oxide (LMO) and lithium nickel manganese cobalt oxide (NMC) offer lower energy density, but longer lives and inherent safety. Such batteries are widely used for electric tools, medical equipment and other roles. NMC in particular is a leading contender for automotive applications. Lithium nickel cobalt aluminum oxide (NCA) and lithium titanate (LTO) are specialty designs aimed at particular niche roles.

Lithium-ion batteries can be dangerous under some conditions and can pose a safety hazard since they contain, unlike other rechargeable batteries, a flammable electrolyte and are also kept pressurised. Because of this the testing standards for these batteries are more stringent than those for acid-electrolyte batteries, requiring both a broader range of test conditions and additional battery-specific tests.[7][8] This is in response to reported accidents and failures, and there have been battery-related recalls by some companies.


Although the word "battery" is a common term to describe an electrochemical storage system, international industry standards differentiate between a "cell" and a "battery".[8][9] A "secondary cell" is a basic electrochemical unit that contains the basic components, such as electrodes, separator, and electrolyte. In the case of secondary lithium-ion cells, this is the single cylindrical, prismatic or pouch unit, that provides an average potential difference at its terminals of 3.7 V for LiCoO
and 3.3 V for LiFePO
. A "secondary battery" or "battery pack" is a collection of cells or cell assemblies which are ready for use, as it contains an appropriate housing, electrical interconnections, and possibly electronics to control and protect the cells from failure.[10][11] In this regard, the simplest "battery" is a single cell with perhaps a small electronic circuit for protection.

In many cases, distinguishing between "cell" and "battery" is not important. However, this should be done when dealing with specific applications, for example, battery electric vehicles, where "battery" may indicate a high voltage system of 400 V, and not a single cell.

The term "module" is often used as an intermediate topology, with the understanding that a battery pack is made of modules, and modules are composed of individual cells.[11]


Before commercial introduction

Varta lithium-ion battery, Museum Autovision, Altlussheim, Germany

Lithium batteries were first proposed by M. S. Whittingham, now at Binghamton University, while working for Exxon in the 1970s.[12] Whittingham used titanium(IV) sulfide and lithium metal as the electrodes. Batteries with metallic lithium electrodes presented safety issues, as lithium is a highly reactive element; it burns in normal atmospheric conditions because of the presence of water and oxygen.[13] As a result, research moved to develop batteries where, instead of metallic lithium, only lithium compounds are present, being capable of accepting and releasing lithium ions.

Reversible intercalation in graphite[14][15] and intercalation into cathodic oxides[16][17] was discovered in the 1970s by J. O. Besenhard at TU Munich. Besenhard proposed its application in lithium cells.[18][19] Electrolyte decomposition and solvent co-intercalation into graphite were severe early drawbacks for battery life.

At Oxford University, England, in 1979, John Goodenough and Koichi Mizushima demonstrated a rechargeable cell with voltage in the 4 V range using lithium cobalt oxide (LiCoO
) as the positive electrode and lithium metal as the negative electrode.[20] This innovation provided the positive electrode material that made LIBs possible. LiCoO
is a stable positive electrode material which acts as a donor of lithium ions, which means that it can be used with a negative electrode material other than lithium metal. By enabling the use of stable and easy-to-handle negative electrode materials, LiCoO
opened a whole new range of possibilities for novel rechargeable battery systems.

In 1977, Samar Basu demonstrated electrochemical intercalation of lithium in graphite at the University of Pennsylvania.[21][22] This led to the development of a workable lithium intercalated graphite electrode at Bell Labs (LiC
)[23] to provide an alternative to the lithium metal electrode battery.

In 1980, Rachid Yazami demonstrated the reversible electrochemical intercalation of lithium in graphite.[24][25] The organic electrolytes available at the time would decompose during charging with a graphite negative electrode, slowing the development of a rechargeable lithium/graphite battery. Yazami used a solid electrolyte to demonstrate that lithium could be reversibly intercalated in graphite through an electrochemical mechanism. The graphite electrode discovered by Yazami is currently (2011-03-20) the most commonly used electrode in commercial lithium ion batteries.

In 1983, Michael M. Thackeray, Goodenough, and coworkers identified manganese spinel as a positive electrode material.[26] Spinel showed great promise, given its low-cost, good electronic and lithium ion conductivity, and three-dimensional structure, which gives it good structural stability. Although pure manganese spinel fades with cycling, this can be overcome with chemical modification of the material.[27] As of 2013, manganese spinel was used in commercial cells.[28]

In 1985, Akira Yoshino assembled a prototype cell using carbonaceous material into which lithium ions could be inserted as one electrode, and lithium cobalt oxide (LiCoO
), which is stable in air, as the other.[29] By using materials without metallic lithium, safety was dramatically improved. LiCoO
enabled industrial-scale production and represents the birth of the current lithium-ion battery.

In 1989, Goodenough and Arumugam Manthiram of the University of Texas at Austin showed that positive electrodes containing polyanions, e.g., sulfates, produce higher voltages than oxides due to the induction effect of the polyanion.[30]

From commercial introduction

The performance and capacity of lithium-ion batteries increases as development progresses.

In 1991, Sony and Asahi Kasei released the first commercial lithium-ion battery.

In 1996, Goodenough, Akshaya Padhi and coworkers proposed lithium iron phosphate (LiFePO
) and other phospho-olivines (lithium metal phosphates with the same structure as mineral olivine) as positive electrode materials.[31]

In 2002, Yet-Ming Chiang and his group at MIT showed a substantial improvement in the performance of lithium batteries by boosting the material's conductivity by doping it with aluminium, niobium and zirconium. The exact mechanism causing the increase became the subject of widespread debate.[32]

In 2004, Chiang again increased performance by utilizing iron(III) phosphate particles of less than 100 nanometers in diameter. This decreased particle density almost one hundredfold, increased the positive electrode's surface area and improved capacity and performance. Commercialization led to a rapid growth in the market for higher capacity LIBs, as well as a patent infringement battle between Chiang and Goodenough.[32]

As of 2011, lithium-ion batteries accounted for 66% of all portable secondary (i.e., rechargeable) battery sales in Japan.[33]

In June 2012, John Goodenough, Rachid Yazami and Akira Yoshino received the 2012 IEEE Medal for Environmental and Safety Technologies for developing the lithium ion battery.

By 2013, the lithium rechargeable battery had progressed to a lithium vanadium phosphate battery to increase energy efficiency in the forward and reverse reaction.

In 2014, John Goodenough, Yoshio Nishi, Rachid Yazami and Akira Yoshino were recognized by the National Academy of Engineering for pioneering and leading the groundwork for today’s lithium ion battery.[34]

In 2014, commercial batteries from Amprius Corp. reached 650 wH/l (20% higher than before), using a silicon anode, and were being delivered to smartphone manufacturers.[35]


Cylindrical 18650 lithium iron phosphate cell before closing

The three primary functional components of a lithium-ion battery are the positive and negative electrodes and electrolyte. Generally, the negative electrode of a conventional lithium-ion cell is made from solvent.[36] The electrochemical roles of the electrodes reverse between anode and cathode, depending on the direction of current flow through the cell.

The most commercially popular negative electrode is graphite. The positive electrode is generally one of three materials: a layered oxide (such as lithium cobalt oxide), a polyanion (such as lithium iron phosphate) or a spinel (such as lithium manganese oxide).[37]

The electrolyte is typically a mixture of organic carbonates such as ethylene carbonate or diethyl carbonate containing complexes of lithium ions.[38] These non-aqueous electrolytes generally use non-coordinating anion salts such as lithium hexafluorophosphate (LiPF
), lithium hexafluoroarsenate monohydrate (LiAsF
), lithium perchlorate (LiClO
), lithium tetrafluoroborate (LiBF
) and lithium triflate (LiCF

Depending on materials choices, the voltage, energy density, life and safety of a lithium-ion battery can change dramatically. Recently, novel architectures using nanotechnology have been employed to improve performance.

Pure lithium is highly reactive. It reacts vigorously with water to form lithium hydroxide and hydrogen gas. Thus, a non-aqueous electrolyte is typically used, and a sealed container rigidly excludes moisture from the battery pack.

Lithium ion batteries are more expensive than NiCd batteries but operate over a wider temperature range with higher energy densities. They require a protective circuit to limit peak voltage.

For notebooks or laptops, lithium-ion cells are supplied as part of a battery pack with temperature sensors, voltage converter/regulator circuit, voltage tap, battery charge state monitor and the main connector. These components monitor the state of charge and current in and out of each cell, capacities of each individual cell (drastic change can lead to reverse polarities which is dangerous),[39] temperature of each cell and minimize the risk of short circuits.[40]


Nissan Leaf's lithium-ion battery pack.

Li-ion cells (as distinct from entire batteries) are available in various shapes, which can generally be divided into four groups:[41]

  • Small cylindrical (solid body without terminals, such as those used in laptop batteries)
  • Large cylindrical (solid body with large threaded terminals)
  • Pouch (soft, flat body, such as those used in cell phones)
  • Prismatic (semi-hard plastic case with large threaded terminals, such as vehicles' traction packs)

Cells with a cylindrical shape are made in a characteristic "swiss roll" manner (known as a "jelly roll" in the US), which means it is a single long sandwich of positive electrode, separator, negative electrode and separator rolled into a single spool. The main disadvantage of this method of construction is that the cell will have a higher series inductance.

The absence of a case gives pouch cells the highest gravimetric energy density; however, for many practical applications they still require an external means of containment to prevent expansion when their state-of-charge (SOC) level is high,[42] and for general structural stability of the battery pack of which they are part.

Since 2011, several research groups have announced demonstrations of [43]

In 2014, Panasonic created the smallest li-ion battery. It is pin shaped. It has a diameter of 3.5mm and a weight of 0.6g.[44]


The participants in the electrochemical reactions in a lithium-ion battery are the negative and positive electrodes with the electrolyte providing a conductive medium for Lithium-ions to move between the electrodes.

Both electrodes allow lithium ions to move in and out of their interiors. During insertion (or intercalation) ions move into the electrode. During the reverse process, extraction (or deintercalation), ions move back out. When a lithium-ion based cell is discharging, the positive Lithium ion moves from the negative electrode (usually graphite) and enters the positive electrode (lithium containing compound). When the cell is charging, the reverse occurs.

Useful work is performed when electrons flow through a closed external circuit. The following equations show one example of the chemistry, in units of moles, making it possible to use coefficient x.

The positive electrode half-reaction is:[45]


The negative electrode half reaction is:

x\mathrm{Li^+} + x\mathrm{e^-} + x\mathrm{C_6} \leftrightarrows\ x\mathrm{LiC_6}

The overall reaction has its limits. Overdischarge supersaturates lithium cobalt oxide, leading to the production of lithium oxide,[46] possibly by the following irreversible reaction:

\mathrm{Li^+} + \mathrm{e^-} + \mathrm{LiCoO_2} \rightarrow \mathrm{Li_2O} + \mathrm{CoO}

Overcharge up to 5.2 volts leads to the synthesis of cobalt(IV) oxide, as evidenced by x-ray diffraction:[47]

\mathrm{LiCoO_2} \rightarrow \mathrm{Li^+} + \mathrm{CoO_2} +\mathrm{e^-}

In a lithium-ion battery the lithium ions are transported to and from the positive or negative electrodes by oxidizing the transition metal, cobalt (Co), in Li
from Co3+
to Co4+
during charge, and reduced from Co4+
to Co3+
during discharge. The cobalt electrode reaction is only reversible for x < 0.5, limiting the depth of discharge allowable. This chemistry was used in the Li-ion cells developed by Sony in 1990.

The cell's energy is equal to the voltage times the charge. Each gram of lithium represents Faraday's constant/6.941 or 13,901 coulombs. At 3 V, this gives 41.7 kJ per gram of lithium, or 11.6 kWh per kg. This is a bit more than the heat of combustion of gasoline, but does not consider the other materials that go into a lithium battery and that make lithium batteries many times heavier per unit of energy.


The cell voltages given in the Electrochemistry section are larger than the potential at which aqueous solutions will electrolyze.

Liquid electrolytes in lithium-ion batteries consist of lithium salts, such as LiPF
, LiBF
or LiClO
in an solvent, such as ethylene carbonate, dimethyl carbonate, and diethyl carbonate. A liquid electrolyte acts as a carrier between the positive and negative electrodes when current flows through an external circuit. Typical conductivities of liquid electrolyte at room temperature (20 °C (68 °F)) are in the range of 10 mS/cm (1 S/m), increasing by approximately 30–40% at 40 °C (104 °F) and decreasing slightly at 0 °C (32 °F).[48]

Organic solvents easily decompose on the negative electrodes during charge. When appropriate [49] which is electrically insulating yet provides significant ionic conductivity. The interphase prevents further decomposition of the electrolyte after the second charge. For example, ethylene carbonate is decomposed at a relatively high voltage, 0.7 V vs. lithium, and forms a dense and stable interface.[50]

Composite electrolytes based on POE (poly(oxyethylene)) developed by Syzdek et al., provide a relatively stable interface.[51][52] It can be either solid (high molecular weight) and be applied in dry Li-polymer cells, or liquid (low molecular weight) and be applied in regular Li-ion cells.


Charge and discharge

During discharge, lithium ions Li+
carry the current from the negative to the positive electrode, through the non-aqueous electrolyte and separator diaphragm.[54]

During charging, an external electrical power source (the charging circuit) applies an over-voltage (a higher voltage but of the same polarity) than that produced by the battery, forcing the current to pass in the reverse direction. The lithium ions then migrate from the positive to the negative electrode, where they become embedded in the porous electrode material in a process known as intercalation.

Charging procedure

The charging procedures for single Li-ion cells, and complete Li-ion batteries, are slightly different.

  • A single Li-ion cell is charged in two stages:[39]
  1. Constant current (CC)
  2. Voltage source (CV)
  • A Li-ion battery (a set of Li-ion cells in series) is charged in three stages:
  1. Constant current
  2. Balance (not required once a battery is balanced)
  3. Voltage source

During the constant current phase, the charger applies a constant current to the battery at a steadily increasing voltage, until the voltage limit per cell is reached.

During the balance phase, the charger reduces the charging current (or cycle the charging on and off to reduce the average current) while the state of charge of individual cells is brought to the same level by a balancing circuit, until the battery is balanced. Some fast chargers skip this stage. Some chargers accomplish the balance by charging each cell independently.

During the constant voltage phase, the charger applies a voltage equal to the maximum cell voltage times the number of cells in series to the battery, as the current gradually declines towards 0, until the current is below a set threshold of about 3% of initial constant charge current.

Periodic topping charge about once per 500 hours. Top charging is recommended to be initiated when voltage goes below 4.05 V/cell.

Failure to follow current and voltage limitations can result in an explosion.[55]

Charging at high and low temperatures

Charging temperature limits for Li-ion are stricter than the operating limits. Lithium-ion chemistry performs well at elevated temperatures but prolonged exposure to heat reduces battery life.

Li‑ion batteries offer good charging performance at cooler temperatures and may even allow 'fast-charging' within a temperature range of 5 to 45 °C (41 to 113 °F).[56] Charging should be performed within this temperature range. At temperatures from 0 to 5 °C charging is possible, but the charge current should be reduced. During a low-temperature charge the slight temperature rise above ambient due to the internal cell resistance is beneficial. High temperatures during charging may lead to battery degradation and charging at temperatures above 45 °C will degrade battery performance, whereas at lower temperatures the internal resistance of the battery may increase, resulting in slower charging and thus longer charging times.[56]

Consumer-grade lithium-ion batteries should not be charged at temperatures below 0 °C (32 °F). Although a battery pack may appear to be charging normally, electroplating of metallic lithium can occur at the negative electrode during a subfreezing charge, and may not be removable even by repeated cycling. Most devices equipped with Li-ion batteries do not allow charging outside of 0-45 °C for safety reasons, except for mobile phones that may allow some degree of charging when they detect an emergency call in progress.[57]


Industry produced about 660 million cylindrical lithium-ion cells in 2012; the 18650 format is by far the most popular for cylindrical cells. If Tesla meets its goal of shipping 40,000 Model S electric cars in 2014 and if the 85-kWh battery, which uses 7,104 of these cells, proves as popular overseas as it was in the U.S., in 2014 the Model S alone would use almost 40 percent of global cylindrical battery production.[58] Production is gradually shifting to higher-capacity 3,000+ mAh cells. Annual flat polymer cell demand was expected to exceed 700 million in 2013.[59]

Tesla Motors is planning on building the world's largest Lithium-ion battery factory—called the Gigafactory before 2020. The factory would be approximately 10,000,000 square feet (930,000 m2) in size and is planned to be able to produce a large enough quantity of cells to be able to build 500,000 vehicle battery packs per year.[60]


  • Specific energy density: 100 to 250 W·h/kg (360 to 900 kJ/kg)[61]
  • Volumetric energy density: 250 to 620 W·h/L (900 to 1900 J/cm³)[2]
  • Specific power density: 300 to 1500 W/kg (@ 20 seconds and 285 W·h/l)[1]

Because lithium-ion batteries can have a variety of positive and negative electrode materials, the energy density and voltage vary accordingly. On average, it has a high capacity of 1200mAh, a battery voltage of 7.2V and 8.6Wh per cycle of use.[62]

The open circuit voltage is higher than aqueous batteries (such as lead acid, nickel-metal hydride and nickel-cadmium).[63] Internal resistance increases with both cycling and age.[63][64] Rising internal resistance causes the voltage at the terminals to drop under load, which reduces the maximum current draw. Eventually increasing resistance means that the battery can no longer operate for an adequate period.

Batteries with a lithium iron phosphate positive and graphite negative electrodes have a nominal open-circuit voltage of 3.2 V and a typical charging voltage of 3.6 V. Lithium nickel manganese cobalt (NMC) oxide positives with graphite negatives have a 3.7 V nominal voltage with a 4.2 V maximum while charging. The charging procedure is performed at constant voltage with current-limiting circuitry (i.e., charging with constant current until a voltage of 4.2 V is reached in the cell and continuing with a constant voltage applied until the current drops close to zero). Typically, the charge is terminated at 3% of the initial charge current. In the past, lithium-ion batteries could not be fast-charged and needed at least two hours to fully charge. Current-generation cells can be fully charged in 45 minutes or less.

Materials of commercial cells

The increasing demand for batteries has led vendors and academics to focus on improving the energy density, operating temperature, safety, durability, charging time, output power, and cost of lithium ion battery solutions. The following materials have been used in commercially available cells. Research into other materials continues.

Positive electrode

Positive electrode
Technology Company Target application Date Benefit
Lithium Nickel Manganese Cobalt Oxide ("NMC", LiNixMnyCozO2) Imara Corporation, Nissan Motor,[65][66] Microvast Inc. 2008 density, output, safety
Lithium Manganese Oxide ("LMO", LiMn2O4) LG Chem,[67] NEC, Samsung,[28] Hitachi,[68] Nissan/AESC,[69] EnerDel[70] Hybrid electric vehicle, cell phone, laptop 1996 durability, cost
Lithium Iron Phosphate ("LFP", LiFePO4) University of Texas/Hydro-Québec,[71] Phostech Lithium Inc., Valence Technology, A123Systems/MIT[72][73] Segway Personal Transporter, power tools, aviation products, automotive hybrid systems, PHEV conversions 1996 moderate density (2 A·h outputs 70 amperes) operating temperature >60 °C (140 °F)
Oxygen ("Li-Air") IBM, Polyplus[74] Automotive 2012 Energy density: up to 10,000 mA·h per gram of positive electrode material. Rechargeable.

Negative electrode

Negative electrode
Technology Density Durability Company Target application Date Comments
Graphite The dominant negative electrode material used in lithium ion batteries. 1991 Low cost and good energy density. Graphite anodes can accommodate one lithium atom for every six carbon atoms. Charging rate is governed by the shape of the long, thin graphene sheets. While charging, the lithium ions must travel to the outer edges of the graphene sheet before coming to rest (intercalating) between the sheets. The circuitous route takes so long that they encounter congestion around those edges.[75]
Lithium Titanate ("LTO", Li4Ti5O12) 9,000 Toshiba, Altairnano automotive ([76] United States Department of Defense[77]), bus (Proterra) 2008 output, charging time, durability (safety, operating temperature −50–70 °C (−58–158 °F))[78]
Hard Carbon Energ2[79] Consumer electronics 2013 greater storage capacity
Tin/Cobalt Alloy Sony Consumer electronics (Sony Nexelion battery) 2005 Larger capacity than a cell with graphite (3.5Ah 18650-type battery)
Silicon/Carbon Volumetric: 580 W·h/l Amprius[80] Smartphones, providing 1850 mA·h capacity 2013 Uses silicon and other electrochemicals. Energy density


The ions in the electrolyte diffuse because there are small changes in the electrolyte concentration. Linear diffusion is only considered here. The change in concentration, c, as a function of time, t, and distance, x, is,
∂c/∂t = −D/ε * ∂c/∂x
The negative sign indicates the ions are flowing from high concentration to low concentration. In this equation, D is the diffusion coefficient for the lithium ion. It has a value of 7.5 × 10−10 m/s in the LiPF6 electrolyte. The value for ε, the porosity of the electrolyte, is 0.724. [81]


Li-ion batteries provide lightweight, high energy density power sources for a variety of devices. To power larger devices, such as electric cars, connecting many small batteries in a parallel circuit is more effective[82] and more efficient than connecting a single large battery. Such devices include:

Li-ion batteries are used in telecommunications applications. Secondary non-aqueous lithium batteries provide reliable backup power to load equipment located in a network environment of a typical telecommunications service provider. Li-ion batteries compliant with specific technical criteria are recommended for deployment in the Outside Plant (OSP) at locations such as Controlled Environmental Vaults (CEVs), Electronic Equipment Enclosures (EEEs), and huts, and in uncontrolled structures such as cabinets. In such applications, li-ion battery users require detailed, battery-specific hazardous material information, plus appropriate fire-fighting procedures, to meet regulatory requirements and to protect employees and surrounding equipment.[83]


A lithium-ion battery from a laptop computer (176 kJ)

Batteries gradually self-discharge even if not connected and delivering current. Li+ rechargeable batteries have a self-discharge rate typically stated by manufacturers to be 1.5-2% per month.[84][85] The rate increases with temperature and state of charge. A 2004 study found that for most cycling conditions self-discharge was primarily time-dependent; however, after several months of stand on open circuit or float charge, state-of-charge dependent losses became significant. The self-discharge rate did not increase monotonically with state-of-charge, but dropped somewhat at intermediate states of charge.[86] Self-discharge rates may increase as batteries age.[87]

For comparison, the self-discharge rate is over 30% per month for common nickel metal hydride (NiMH) batteries,[88] dropping to about 1.25% per month for low self-discharge NiMH batteries, and 10% per month in nickel-cadmium batteries.

Battery life

Rechargeable battery life is almost always defined as number of full charge-discharge cycles by manufacturers and testers. In addition to cycling, storing also degrades batteries. The reason for battery degradation are chemical changes of the electrodes. For cycled cells, the ageing mechanism is dependent on the ambient temperature during charging.[89]

Manufacturers' information implies that the life of a battery that is not abused depends upon the number of charge cycles it undergoes, specifying typical battery capacity in terms of number of cycles (e.g., capacity dropping linearly to 80% over 500 cycles), with no mention of age of the battery.[90] Research by Professor Jeff Dahn of Dalhousie University suggests this common industry practice of merely counting cycles, ignoring the effect of age, is a poor predictor of real-world battery life. On average, its lifetime consists of 1000 cycles.[91] Battery performance is rarely specified over more than 500 cycles. This means that batteries of mobile phones, or other hand-held devices in daily use, are not expected to last longer than three years. But it is also quite possible to obtain lithium-ion batteries based on carbon anodes with more than 10.000 cycles.[92]

Batteries may last longer if not stored fully discharged. As the battery self-discharges over time, its voltage gradually diminishes. When depleted below the low-voltage threshold of the protection circuit (2.4 to 2.9 V/cell, depending on chemistry) it will be disconnected and cannot be further discharged until recharged if a protection circuit is present. This is because as the discharge progresses, the metallic contents of the cell are plated onto its internal structure creating an unwanted discharge path.

The rate of degradation of lithium-ion batteries is strongly temperature-dependent; they degrade much faster if stored or used at higher temperatures. The carbon negative electrode of the cell also generates heat. High charge levels and elevated temperatures (whether from charging or ambient air) hasten capacity loss.[63] Poor ventilation may increase temperatures, further shortening battery life. Loss rates vary by temperature: 6% loss at 0 °C (32 °F), 20% at 25 °C (77 °F), and 35% at 40 °C (104 °F). In contrast, the calendar life of LiFePO
cells is not affected by high charge states.[93] They may be stored in a refrigerator.[94][95]

Charging forms deposits inside the electrolyte that inhibit ion transport. The increase in internal resistance reduces the cell's ability to deliver current. This problem is more pronounced in high-current applications.


The need to "condition" NiCd and NiMH batteries has incorrectly leaked into folklore surrounding Li-ion batteries. The recommendation for the older technologies is to leave the device plugged in for seven or eight hours, even if fully charged.[96] This may be a confusion of battery software calibration instructions with the "conditioning" instructions for NiCd and NiMH batteries.[97]

Although not currently mainstream, technology exists[98] that can largely prevent degradation and even reverse what is currently accepted as normal aging capacity loss. Such technology is used by " batteryOS " system on some apple devices, for example.

Multicell devices

Li-ion batteries require a battery management system to prevent operation outside each cell's safe operating area (over-charge, under-charge, safe temperature range) and to balance cells to eliminate state of charge mismatches, thereby significantly improving battery efficiency and increasing overall capacity. As the number of cells and load currents increase, the potential for mismatch increases. The two kinds of mismatch are state-of-charge (SOC) and capacity/energy ("C/E"). Though SOC is more common, each problem limits pack charge capacity (mA·h) to that of the weakest cell.


If overheated or overcharged, Li-ion batteries may suffer thermal runaway and cell rupture.[99] In extreme cases this can lead to combustion. To reduce these risks, lithium-ion battery packs contain fail-safe circuitry that disconnects the battery when its voltage is outside the safe range of 3–4.2 V per cell.[45][88] Lithium-ion cells are very susceptible to damage outside the allowed voltage range that is typically within (2.5 to 3.65) V for most LFP cells. Exceeding this voltage range results in premature ageing of the cells and, furthermore, results in safety risks due to the reactive components in the cells. [100] When stored for long periods the small current draw of the protection circuitry may drain the battery below its shutoff voltage; normal chargers may then be useless. Many types of lithium-ion cells cannot be charged safely below 0 °C.[101]

Other safety features are required in each cell:[45]

  • Shut-down separator (for overheating)
  • Tear-away tab (for internal pressure)
  • Vent (pressure relief)
  • Thermal interrupt (overcurrent/overcharging)

These devices occupy useful space inside the cells, add additional points of failure and irreversibly disable the cell when activated. They are required because the negative electrode produces heat during use, while the positive electrode may produce oxygen. These devices and improved electrode designs reduce/eliminate the risk of fire or explosion. Further, these features increase costs compared to nickel metal hydride batteries, which require only a hydrogen/oxygen recombination device (preventing damage due to mild overcharging) and a back-up pressure valve.[102] Contaminants inside the cells can defeat these safety devices.

Short-circuiting a battery will cause the cell to overheat and possibly to catch fire. Adjacent cells may then overheat and fail, possibly causing the entire battery to ignite or rupture. In the event of a fire, the device may emit dense irritating smoke.[103] The fire energy content (electrical + chemical) of cobalt-oxide cells is about 100 to 150 kJ per A·h, most of it chemical.[39][104]

Replacing the lithium cobalt oxide positive electrode material in lithium-ion batteries with a lithium metal phosphate such as lithium iron phosphate improves cycle counts, shelf life and safety, but lowers capacity. As of 2006 these 'safer' lithium-ion batteries were mainly used in electric cars and other large-capacity battery applications, where safety is critical.[105]

Lithium-ion batteries, unlike other rechargeable batteries, have a potentially hazardous pressurised flammable electrolyte, and require strict quality control during manufacture.[106] A faulty battery can cause a serious fire. Faulty chargers can affect the safety of the battery because they can destroy the battery's protection circuit. While charging at temperatures below 0 °C, the negative electrode of the cells gets plated with pure lithium, which can compromise the safety of the whole pack. Battery packs which are not branded by a reputable manufacturer may not be built to the same safety standard as branded ones.

While fire is often serious, it may be catastrophically so. In about 2010 large lithium-ion batteries were introduced in place of other chemistries to power systems on some aircraft; as of January 2014 there had been at least four serious lithium-ion battery fires, or smoke, on the Boeing 787 passenger aircraft, introduced in 2011, which did not cause crashes but had the potential to do so.[107][108]

Environmental concerns and recycling

Since Li-ion batteries contain less toxic metals than other types of batteries which may contain lead or cadmium[45] they are generally categorized as non-hazardous waste. Li-ion battery elements including iron, copper, nickel and cobalt are considered safe for incinerators and landfills. These metals can be recycled, but mining generally remains cheaper than recycling.[109] At present, not much is invested into recycling Li-ion batteries due to costs, complexities and low yield. The most expensive metal involved in the construction of the cell is cobalt. Lithium iron phosphate is cheaper but has other drawbacks. Lithium is less expensive than other metals used. The manufacturing processes of nickel and cobalt for the positive electrode and also the solvent, present potential environmental and health hazards.[110][111]


In October 2004 Kyocera Wireless recalled approximately 1 million mobile phone batteries to identify counterfeits.[112]

In December 2005 Dell recalled approximately 22,000 laptop computer batteries, and 4.1 million in August 2006.[113] Approximately 10 million Sony batteries used in Dell, Sony, Apple, Lenovo, Panasonic, Toshiba, Hitachi, Fujitsu and Sharp laptops were recalled in 2006. The batteries were found to be susceptible to internal contamination by metal particles during manufacture. Under some circumstances, these particles could pierce the separator, causing a dangerous short-circuit.[114]

In March 2007 computer manufacturer Lenovo recalled approximately 205,000 batteries at risk of explosion. In August 2007 mobile phone manufacturer Nokia recalled over 46 million batteries at risk of overheating and exploding.[115] One such incident occurred in the Philippines involving a Nokia N91, which used the BL-5C battery.[116]

Transport restrictions

Japan Airlines Boeing 787 lithium cobalt oxide battery that caught fire in 2013

IATA estimates that over a billion lithium cells are flown each year.[104]

The maximum size of each battery (whether installed in a device or as spare batteries) that can be carried is one that has an equivalent lithium content (ELC) not exceeding 8 grammes per battery. Except, that if only one or two batteries are carried, each may have an ELC of not more than 25 grammes each.[117] The ELC for any battery is found by multiplying the ampere-hour capacity of each cell by 0.3 and then multiplying the result by the number of cells in the battery.[117] The resultant calculated lithium content is not the actual lithium content but a theoretical figure solely for transportation purposes. When shipping lithium ion batteries however, if the total lithium content in the cell exceeds 1.5 g, the package must be marked as “Class 9 miscellaneous hazardous material”.

Although devices containing lithium-ion batteries may transported in checked baggage, spare batteries may be only transported in carry-on baggage.[117] They must be protected against short circuiting, and example tips are provided in the transport regulations on safe packaging and carriage; e.g., such batteries should be in their original protective packaging or, "by taping over the exposed terminals or placing each battery in a separate plastic bag or protective pouch".[117][118] These restriction do not apply to a lithium-ion battery that is a part of a wheelchair or mobility aid (including any spare batteries) to which a separate set of rules and regulations apply.[117]

Some postal administrations restrict air shipping (including EMS) of lithium and lithium-ion batteries, either separately or installed in equipment. Such restrictions apply in Hong Kong,[119] Australia and Japan.[120]

On 16 May 2012, the United States Postal Service (USPS) banned shipping anything containing a lithium battery to an overseas address, after fires from transport of batteries.[121] This restriction made it difficult to send anything containing lithium batteries to military personnel overseas, as the USPS was the only method of shipment to these addresses; the ban was lifted on 15 November 2012.[122]

The Boeing 787 Dreamliner uses large lithium cobalt oxide[123] batteries, which are more reactive than newer types of batteries such as LiFePO


Researchers are working to improve the research methods, power density, safety, cycle durability, recharge time, cost, flexibility and other characteristics of these batteries.

See also


  1. ^ a b c "Rechargeable Li-Ion OEM Battery Products". Archived from the original on April 13, 2010. Retrieved 23 April 2010. 
  2. ^ a b c "Panasonic Develops New Higher-Capacity 18650 Li-Ion Cells; Application of Silicon-based Alloy in Anode". Retrieved 31 January 2011. 
  3. ^ Valøen, Lars Ole and Shoesmith, Mark I. (2007). The effect of PHEV and HEV duty cycles on battery and battery pack performance (PDF). 2007 Plug-in Highway Electric Vehicle Conference: Proceedings. Retrieved 11 June 2010.
  4. ^ Abe, H.; Murai, T.; Zaghib, K. (1999). "Vapor-grown carbon fiber anode for cylindrical lithium ion rechargeable batteries". Journal of Power Sources 77 (2): 110.  
  5. ^ Battery Types and Characteristics for HEV ThermoAnalytics, Inc., 2007. Retrieved 11 June 2010.
  6. ^ Ballon, Massie Santos (14 October 2008). "Electrovaya, Tata Motors to make electric Indica". Cleantech Group. Archived from the original on 2011-05-09. Retrieved 11 June 2010. 
  7. ^ Millsaps, C. (2012, Jul 10). Second Edition of IEC 62133: The Standard for Secondary Cells and Batteries Containing Alkaline or Other Non-Acid Electrolytes is in its Final Review Cycle. Retrieved from Battery Power Online (2014, Jan 10)
  8. ^ a b IEC 62133. Secondary cells and batteries containing alkaline or other non-acid electrolytes – Safety requirements for portable sealed secondary cells, and for batteries made from them, for use in portable applications (2.0 ed.). International Electrotechnical Commission. December 2012.  
  9. ^ IEC 61960. Secondary cells and batteries containing alkaline or other non-acid electrolytes – Secondary lithium cells and batteries for portable applications (2.0 ed.). International Electrotechnical Commission. June 2011.  
  10. ^ ISO 12405-1:2011. Electrically propelled road vehicles — Test specification for lithium-ion traction battery packs and systems. Part 1: High-power applications. International Organization for Standardization. 2011.  
  11. ^ a b Doughty, Daniel H.; Crafts, Chris C. (August 2006). SAND 2005-3123. FreedomCAR Electrical Energy Storage System Abuse Test Manual for Electric and Hybrid Electric Vehicle Applications. Sandia National Laboratories. 
  12. ^ Whittingham, M. S. (1976). "Electrical Energy Storage and Intercalation Chemistry". Science 192 (4244): 1126–1127.  
  13. ^ "XXIV.—On chemical analysis by spectrum-observations". Quarterly Journal of the Chemical Society of London 13 (3): 270. 1861.  
  14. ^ Besenhard, J.O. and Fritz, H.P. (1974). "Cathodic Reduction of Graphite in Organic Solutions of Alkali and NR4+ Salts". J. Electroanal. Chem. 53 (2): 329.  
  15. ^ Besenhard, J. O. (1976). "The electrochemical preparation and properties of ionic alkali metal-and NR4-graphite intercalation compounds in organic electrolytes". Carbon 14 (2): 111–115.  
  16. ^ Schöllhorn, R.; Kuhlmann, R.; Besenhard, J. O. (1976). "Topotactic redox reactions and ion exchange of layered MoO3 bronzes". Materials Research Bulletin 11: 83.  
  17. ^ Besenhard, J. O.; Schöllhorn, R. (1976). "The discharge reaction mechanism of the MoO3 electrode in organic electrolytes". Journal of Power Sources 1 (3): 267.  
  18. ^ Besenhard, J. O.; Eichinger, G. (1976). "High energy density lithium cells". Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 68: 1.  
  19. ^ Eichinger, G.; Besenhard, J. O. (1976). "High energy density lithium cells". Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 72: 1.  
  20. ^ """USPTO search for inventions by "Goodenough, John. Retrieved 8 October 2011. 
  21. ^ Zanini, M.; Basu, S.; Fischer, J. E. (1978). "Alternate synthesis and reflectivity spectrum of stage 1 lithium—graphite intercalation compound". Carbon 16 (3): 211.  
  22. ^ Basu, S.; Zeller, C.; Flanders, P. J.; Fuerst, C. D.; Johnson, W. D.; Fischer, J. E. (1979). "Synthesis and properties of lithium-graphite intercalation compounds". Materials Science and Engineering 38 (3): 275.  
  23. ^ US 4304825, Basu; Samar, "Rechargeable battery", issued 8 December 1981, assigned to Bell Telephone Laboratories 
  24. ^ International Meeting on Lithium Batteries, Rome, 27–29 April 1982, C.L.U.P. Ed. Milan, Abstract #23
  25. ^ Yazami, R.; Touzain, P. (1983). "A reversible graphite-lithium negative electrode for electrochemical generators". Journal of Power Sources 9 (3): 365.  
  26. ^ Thackeray, M. M.; David, W. I. F.; Bruce, P. G.; Goodenough, J. B. (1983). "Lithium insertion into manganese spinels". Materials Research Bulletin 18 (4): 461.  
  27. ^ Nazri, Gholamabbas and Pistoia, Gianfranco (2004). Lithium batteries: science and Technology. Springer.  
  28. ^ a b Voelcker, John (September 2007). Lithium Batteries Take to the Road. IEEE Spectrum. Retrieved 15 June 2010.
  29. ^ US 4668595, Yoshino; Akira, "Secondary Battery", issued 10 May 1985, assigned to Asahi Kasei 
  30. ^ Manthiram, A.; Goodenough, J. B. (1989). "Lithium insertion into Fe2(SO4)3 frameworks". Journal of Power Sources 26 (3–4): 403.  
  31. ^ Padhi, A. K. (1997). "Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries". Journal of the Electrochemical Society 144 (4): 1188–1110.  
  32. ^ a b "In search of the perfect battery" (PDF). The Economist. 6 March 2008. Archived from the original on 25 September 2009. Retrieved 11 May 2010. 
  33. ^ Monthly battery sales statistics. Machinery statistics released by the Ministry of Economy, Trade and Industry, March 2011.
  34. ^ "Lithium Ion Battery Pioneers Receive Draper Prize, Engineering’s Top Honor", University of Texas, Jan. 6, 2014
  35. ^ "At long last, new lithium battery tech actually arrives on the market (and might already be in your smartphone)". ExtremeTech. Retrieved 2014-02-16. 
  36. ^ Silberberg, M. (2006). Chemistry: The Molecular Nature of Matter and Change, 4th Ed. New York (NY): McGraw-Hill Education. p. 935, ISBN 0077216504.
  37. ^ Thackeray, M. M.; Thomas, J. O.; Whittingham, M. S. (2011). "Science and Applications of Mixed Conductors for Lithium Batteries". MRS Bulletin 25 (3): 39.  
  38. ^ MSDS: National Power Corp Lithium Ion Batteries (PDF).; Tektronix Inc., 7 May 2004. Retrieved 11 June 2010.
  39. ^ a b c "How to rebuild a Li-Ion battery pack". Electronics Lab. Retrieved 6 June 2013. 
  40. ^ "Inside a notebook battery pack". ZDNet. Rupert Goodwins . August 17, 2006. Retrieved 6 June 2013. 
  41. ^ Andrea 2010, p. 2.
  42. ^ Andrea 2010, p. 234.
  43. ^ Wang, Y.; He, P.; Zhou, H. (2012). "Li-Redox Flow Batteries Based on Hybrid Electrolytes: At the Cross Road between Li-ion and Redox Flow Batteries". Advanced Energy Materials 2 (7): 770.  
  44. ^ Panasonic unveils 'smallest' pin-shaped lithium ion battery, Telecompaper, 6 October 2014
  45. ^ a b c d "Lithium Ion technical handbook" (PDF). Gold Peak Industries Ltd. November 2003. Archived from the original on 2007-10-07. 
  46. ^ Choi, H. C.; Jung, Y. M.; Noda, I.; Kim, S. B. (2003). "A Study of the Mechanism of the Electrochemical Reaction of Lithium with CoO by Two-Dimensional Soft X-ray Absorption Spectroscopy (2D XAS), 2D Raman, and 2D Heterospectral XAS−Raman Correlation Analysis". The Journal of Physical Chemistry B 107 (24): 5806.  
  47. ^ Amatucci, G. G. (1996). "CoO2, the End Member of the LixCoO2 Solid Solution". Journal of the Electrochemical Society 143 (3): 1114–1110.  
  48. ^ Wenige, Niemann, et al. (30 May 1998). Liquid Electrolyte Systems for Advanced Lithium Batteries (PDF).; Chemical Engineering Research Information Center(KR). Retrieved 11 June 2010.
  49. ^ Balbuena, P.B., Wang, Y.X. (eds) (2004). Lithium Ion Batteries: Solid Electrolyte Interphase, Imperial College Press, London, ISBN 1860943624.
  50. ^ Fong, R. A. (1990). "Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells". Journal of the Electrochemical Society 137 (7): 2009–2010.  
  51. ^ Syzdek, J. A.; Borkowska, R.; Perzyna, K.; Tarascon, J. M.; Wieczorek, W. A. A. (2007). "Novel composite polymeric electrolytes with surface-modified inorganic fillers". Journal of Power Sources 173 (2): 712.  
  52. ^ Syzdek, J. A.; Armand, M.; Marcinek, M.; Zalewska, A.; Żukowska, G. Y.; Wieczorek, W. A. A. (2010). "Detailed studies on the fillers modification and their influence on composite, poly(oxyethylene)-based polymeric electrolytes". Electrochimica Acta 55 (4): 1314.  
  53. ^ Reiter, J.; Nádherná, M.; Dominko, R. (2012). "Graphite and LiCo1/3Mn1/3Ni1/3O2 electrodes with piperidinium ionic liquid and lithium bis(fluorosulfonyl)imide for Li-ion batteries". Journal of Power Sources 205: 402.  
  54. ^ David Linden, Thomas B. Reddy (ed) (2002 ). Handbook of Batteries 3rd Edition. McGraw-Hill, New York, chapter 35, ISBN 0-07-135978-8.
  55. ^ "Design Review For: Advanced Electric Vehicle Battery Charger, ECE 445 Senior Design Project".  090521
  56. ^ a b "Lithium Ion Rechargeable Batteries. Technical Handbook". 
  57. ^ Siemens CL75 user manual. Siemens AG. 2005. p. 8. 
  58. ^ Fisher, Thomas. "Will Tesla Alone Double Global Demand For Its Battery Cells? (Page 2)". Retrieved 2014-02-16. 
  59. ^ "Reduced cell cost suggests the upcoming era of large capacity cells". EnergyTrend. 2013-05-06. Retrieved 2014-02-16. 
  60. ^ Cuthbertson, Anthony (2014-03-20). "Tesla to Create World's Largest Lithium-ion Battery Factory". IBT. Retrieved 2014-06-12. 
  61. ^ "Overview of lithium ion batteries". Panasonic. Jan 2007. Archived from the original on Nov 7, 2011. 
  62. ^ 
  63. ^ a b c Winter & Brodd 2004, p. 4258
  64. ^ Andrea 2010, p. 12.
  65. ^ "Imara Corporation website". Retrieved 8 October 2011. 
  66. ^ O'Dell, John (17 December 2008). Fledgling Battery Company Says Its Technology Boosts Hybrid Battery Performance Green Car Advisor; Edmunds Inc. Retrieved 11 June 2010.
  67. ^ Jost, Kevin [ed.] (October 2006). Tech Briefs: CPI takes new direction on Li-ion batteries (PDF).; Automotive Engineering Online.
  68. ^ Loveday, Eric (23 April 2010). "Hitachi develops new manganese cathode, could double life of li-ion batteries". Retrieved 11 June 2010. 
  69. ^ Nikkei (29 November 2009). Report: Nissan On Track with Nickel Manganese Cobalt Li-ion Cell for Deployment in 2015 Green Car Congress (blog). Retrieved 11 June 2010.
  70. ^ EnerDel Technical Presentation (PDF). EnerDel Corporation. 29 October 2007..
  71. ^ Elder, Robert and Zehr, Dan (16 February 2006). Valence sued over UT patent Austin American-Statesman (courtesy Bickle & Brewer Law Firm)..
  72. ^ Bulkeley, William M. (26 November 2005). "New Type of Battery Offers Voltage Aplenty, at a Premium". The Day. p. E6. 
  73. ^ A123Systems (2 November 2005). A123Systems Launches New Higher-Power, Faster Recharging Li-Ion Battery Systems Green Car Congress; A123Systems (Press release). Retrieved 11 May 2010.
  74. ^ Garling, Caleb (20 April 2012). "IBM Demos Uber Battery That 'Breathes' | Wired Enterprise". Retrieved 22 June 2012. 
  75. ^ Name *. "Northwestern researchers advance Li-ion batteries with graphene-silicon sandwich | Solid State Technology". Retrieved 2014-04-28. 
    Zhao, X.; Hayner, C. M.; Kung, M. C.; Kung, H. H. (2011). "In-Plane Vacancy-Enabled High-Power Si-Graphene Composite Electrode for Lithium-Ion Batteries". Advanced Energy Materials 1 (6): 1079.  
  76. ^ "... Acceptance of the First Grid-Scale, Battery Energy Storage System" (Press release). Altair Nanotechnologies. 21 November 2008. Retrieved 8 October 2009. 
  77. ^ Ozols, Marty (11 November 2009). Altair Nanotechnologies Power Partner – The Military. Systemagicmotives (personal webpage). Retrieved 11 June 2010.
  78. ^ Gotcher, Alan J. (29 November 2006). "Altair EDTA Presentation". Archived from the original on 2007-06-16. 
  79. ^ Synthetic Carbon Negative electrode Boosts Battery Capacity 30 Percent | MIT Technology Review. (2 April 2013). Retrieved on 16 April 2013.
  80. ^ Newman, Jared (2013-05-23). "Amprius Begins Shipping a Better Smartphone Battery |". Retrieved 2013-06-04. 
  81. ^ 
  82. ^ Andrea 2010, p. 229.
  83. ^ GR-3150-CORE, Generic Requirements for Secondary Non-Aqueous Lithium Batteries.
  84. ^ Sanyo: Overview of Lithium Ion Batteries, listing self-discharge rate of 2%/mo
  85. ^ Sanyo: Harding energy specification, listing self-discharge rate of 0.3%/mo
  86. ^ Zimmerman, A. H. (2004). "Self-discharge losses in lithium-ion cells". IEEE Aerospace and Electronic Systems Magazine 19 (2): 19.  
  87. ^ Phil Weicker (1 November 2013). A Systems Approach to Lithium-Ion Battery Management. Artech House. p. 214.  
  88. ^ a b Winter & Brodd 2004, p. 4259
  89. ^ Thomas Waldmann, Marcel Wilka, Michael Kasper, Meike Fleischhammer, Margret Wohlfahrt-Mehrens: Temperature dependent ageing mechanisms in Lithium-ion batteries – A Post-Mortem study. In: Journal of Power Sources. 262, 2014, S. 129–135, doi:10.1016/j.jpowsour.2014.03.112.
  90. ^ Specification sheet for typical lithium-ion battery
  91. ^ 
  92. ^ Untersuchungen von Polarisationseffekte an Lithium-Ionen-Batterien In: Promotion Dr. Marcel Wilka 19. Dezember 2013.
  93. ^ Andrea 2010, p. 9.
  94. ^ Cristo, L.M. and Atwater, T. B. Characteristics and Behavior of 1M LiPF6 1EC:1DMC Electrolyte at Low Temperatures. Fort Monmouth, NJ: U.S. Army Research. 
  95. ^ "Modelling capacity fade in Lithium-ion cells, Bor Yann Liaw, Jungst, Nagasubramanian, and Doughty, Sandia National Laborator – Analysis of Lithium-Ion Battery Degradation during Thermal Aging" (PDF). Retrieved 8 October 2011. 
  96. ^ Tip: Condition your new cell phone’s battery to make it last longer (but be sure to condition it properly). (24 December 2011). Retrieved on 16 April 2013.
  97. ^ Yadav, Antriksh. (31 December 2010) Top 5 lithium-ion battery myths. Retrieved on 16 April 2013.
  98. ^ "patent WO2013142964A1". 
  99. ^ Spotnitz, R.; Franklin, J. (2003). "Abuse behavior of high-power, lithium-ion cells". Journal of Power Sources 113: 81.  
  100. ^ 
  101. ^ "Lithium-ion Battery Charging Basics". PowerStream Technologies. Retrieved 4 December 2010. 
  102. ^ Winter & Brodd 2004, p. 4259.
  103. ^ Electrochem Commercial Power (9 September 2006). "Safety and handling guidelines for Electrochem Lithium Batteries" (PDF). Rutgers University. Retrieved 21 May 2009. 
  104. ^ a b Mikolajczak, Celina; Kahn, Michael; White, Kevin and Long, Richard Thomas (July 2011). "Lithium-Ion Batteries Hazard and Use Assessment". Fire Protection Research Foundation. pp. 76, 90, 102. Retrieved 27 January 2013. 
  105. ^ Cringely, Robert X. (1 September 2006). "Safety Last". The New York Times. Retrieved 14 April 2010. 
  106. ^ "Can anything tame the battery flames?". Cnet . Michael Kanellos. August 15, 2006. Retrieved 14 June 2013. 
  107. ^ Guardian newspaper: Heathrow fire on Boeing Dreamliner 'started in battery component', 18 July 2013
  108. ^ "Boeing 787 aircraft grounded after battery problem in Japan". BBC News. January 14, 2014. Retrieved January 16, 2014. 
  109. ^ "Are lithium batteries sustainable to the environment?". Alternative Energy Resources. Vaishnovi Kamyamkhane. Retrieved 3 June 2013. 
  110. ^ "Study Identifies Environmental and Health Impacts of Lithium-ion Batteries for EVs". May 28, 2013. Greenfleet Magazine. Retrieved 3 June 2013. 
  111. ^ "Can Nanotech Improve Li-ion Battery Performance". May 30, 2013. Environmental Leader. Retrieved 3 June 2013. 
  112. ^ "Kyocera Launches Precautionary Battery Recall, Pursues Supplier of Counterfeit Batteries" (Press release).  
  113. ^ Tullo, Alex (21 August 2006). "Dell Recalls Lithium Batteries". Chemical and Engineering News 84 (34): 11.  
  114. ^ Hales, Paul (21 June 2006). Dell laptop explodes at Japanese conference. The Inquirer. Retrieved 15 June 2010.
  115. ^ Nokia issues BL-5C battery warning, offers replacement. Wikinews. 14 August 2007. Retrieved 8 October 2009. 
  116. ^ Nokia N91 cell phone explodes, Mukamo – Filipino News (27 July 2007). Retrieved 15 June 2010.
  117. ^ a b c d e United States Code of Federal Regulations, Title 49: Transportation, Subtitle B: Other regulations relating to transportation, Chapter I: Pipeline and hazardous materials safety administration, department of transportation, Subchapter C: Hazardous materials regulations, Part 175: Carriage by aircraft, Subpart A: General information and regulations, Section 10: Exceptions for passengers, crewmembers, and air operators, 49 C.F.R. 175.10.
  118. ^ Galbraith, Rob (3 January 2008). "U.S. Department of Transportation revises lithium battery rules press release". Little Guy Media. Retrieved 11 May 2009. 
  119. ^ Prohibitions – 6.3.12 – Dangerous, offensive and indecent articles (PDF). Hong Kong Post Office Guide. December 2009. Retrieved 15 June 2010.
  120. ^ International Mail > FAQs > Goods/Services: Shipping a Laptop. Japan Post Service Co. Ltd. Retrieved 15 June 2010.
  121. ^ USPS To Stop Delivering iPads And Kindles To Troops And Overseas Consumers On 16 May. USPS. Retrieved 27 June 2012.
  122. ^ Just in Time for the Holidays, U.S. Postal Service to Begin Global Shipping of Packages with Lithium Batteries USPS. Retrieved 6 December 2012.
  123. ^ "Lithium ion cells for Aerospace applications: LVP series". GS UASA. Retrieved 17 January 2013. 
  124. ^ Dalløkken, Per Erlien (17 January 2013). "Her er Dreamliner-problemet" (in Norway).  


External links

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.