World Library  
Flag as Inappropriate
Email this Article

Manganese nodule

Article Id: WHEBN0000282473
Reproduction Date:

Title: Manganese nodule  
Author: World Heritage Encyclopedia
Language: English
Subject: Soviet submarine K-129 (1960), Birnessite, Manganese, Deep sea mining, International Seabed Authority
Collection: Manganese Minerals, Underwater Mining
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Manganese nodule

Polymetallic nodules, also called manganese nodules, are rock concretions on the sea bottom formed of concentric layers of iron and manganese hydroxides around a core. The core may be microscopically small and is sometimes completely transformed into manganese minerals by crystallization. When visible to the naked eye, it can be a small test (shell) of a microfossil (radiolarian or foraminifer), a phosphatized shark tooth, basalt debris or even fragments of earlier nodules.

Manganese nodule
Nodules on the Seabed

Nodules vary in size from tiny particles visible only under a microscope to large pellets more than 20 centimetres (8 in) across. However, most nodules are between 5 and 10 cm (2 and 4 in) in diameter, about the size of potatoes. Their surface is generally smooth, sometimes rough, mammilated (knobby) or otherwise irregular. The bottom, buried in sediment, is generally rougher than the top.

Contents

  • Growth and composition 1
  • Occurrence 2
  • Mining 3
  • Legal developments 4
  • Environmental impacts 5
  • See also 6
  • References 7
  • Further reading 8
  • External links 9

Growth and composition

Nodule growth is one of the slowest of all known microorganisms (biogenic). Several of these processes may operate concurrently or they may follow one another during the formation of a nodule.

Polymetallic nodules

The chemical composition of nodules varies according to the kind of manganese minerals and the size and characteristics of the core. Those of greatest economic interest contain manganese (27-30%), nickel (1.25-1.5 %), copper (1-1.4 %) and cobalt (0.2-0.25 %). Other constituents include iron (6%), silicon (5%) and aluminium (3%), with lesser amounts of calcium, sodium, magnesium, potassium, titanium and barium, along with hydrogen and oxygen.

Occurrence

Nodules lie on the seabed sediment, often partly or completely buried. They vary greatly in abundance, in some cases touching one another and covering more than 70% of the sea floor. The total amount of polymetallic nodules on the sea floor was estimated at 500 billion tons by Alan A. Archer of the London Geological Museum in 1981. They can occur at any depth, even in lakes, but the highest concentrations have been found on vast abyssal plains in the deep ocean between 4,000 and 6,000 m (13,000 and 20,000 ft).

Polymetallic nodules were discovered in 1868 in the Kara Sea, in the Arctic Ocean of Siberia. During the scientific expeditions of the HMS Challenger (1872–1876), they were found to occur in most oceans of the world. Nodules of economic interest have been found in three areas:

The most promising of these deposits in terms of nodule abundance and metal concentration occur in the Clipperton Fracture Zone of the eastern equatorial Pacific between Hawaii and Central America.

Mining

Interest in the potential exploitation of polymetallic nodules generated a great deal of activity among prospective mining consortia in the 1960s and 1970s. Almost half a billion dollars was invested in identifying potential deposits and in research and development of technology for mining and processing nodules. These initial undertakings were carried out primarily by four multinational consortia composed of companies from the United States, Canada, the United Kingdom, the Federal Republic of Germany, Belgium, the Netherlands, Italy, Japan and two groups of private companies and agencies from France and Japan. There were also three publicly sponsored entities from the Soviet Union, India and China. In the mid-seventies, a $70-million international joint venture succeeded in collecting multi-ton quantities of manganese nodules from the abyssal plains (18,000 feet, 5.5 km + depth) of the eastern equatorial Pacific Ocean. Significant quantities of nickel (the primary target) as well as copper and cobalt were subsequently extracted from this "ore" using both pyrometallurgical and hydrometallurgical methods. In the course of this 8-year project, a number of ancillary developments evolved, including the use of near-bottom towed side-scan sonar array to assay the nodule population density on the abyssal silt whilst simultaneously performing a sub-bottom profile with a derived, vertically oriented, low-frequency acoustic beam.

The technology and experience developed during the course of this project were never commercialized because the last two decades of the 20th century saw an excess of nickel production. The estimated $3.5-billion (1978 US dollars) investment to implement commercialization was an additional factor. Sumitomo Metal Mining continues to maintain a small (place-keeping) organization in this field.

Legal developments

The promise of nodule exploitation was one of the main factors that led developing nations to propose that the deep seabed beyond the limits of national jurisdiction should be treated as a “common heritage of mankind”, with proceeds to be shared between those who developed this resource and the rest of the international community. This initiative eventually resulted in the adoption (1982) of the United Nations Convention on the Law of the Sea and the establishment (1994) of the International Seabed Authority, with responsibility for controlling all deep-sea mining in international areas. The first legislative achievement of this intergovernmental organization was the adoption (2000) of regulations for prospecting and exploration for polymetallic nodules, with special provisions to protect the marine environment from any adverse effects. The Authority followed this up (2001-2002) by signing 15-year contracts with seven private and public entities, giving them exclusive rights to explore for nodules in specified tracts of the seabed, each 75,000 square kilometers in size. The United States, whose companies were among the key actors in the earlier period of exploration, remains outside this compact as a non-party to the Law of the Sea Convention.

Kennecott Copper had explored the potential profits in manganese nodule mining and found that it was not worth the cost. On top of the environmental issues and the fact that the profits had to be shared, there was no cheap way to get the manganese nodules off the sea floor.

In the meantime, interest in the extraction of nodules waned. Three factors were largely responsible:

  • Difficulty and expense of developing and operating mining technology that could economically remove the nodules from depths of five or six kilometers and transport them to the ocean surface
  • High taxes the international community would charge for the mining, and
  • Continuing availability of the key minerals from land-based sources at market prices.

The commercial extraction of polymetallic nodules is not considered likely to occur during the next two decades.

Environmental impacts

Nodule mining could affect tens of thousands of square kilometers of deep sea ecosystems. Nodule regrowth takes decades to millions of years and that would make such mining an unsustainable and nonrenewable practice. Any prediction about the effects of mining is extremely uncertain. Thus, nodule mining could cause habitat alteration, direct mortality of benthic creatures, or suspension of sediment, which can smother filter feeders.[1] Future environmental impact studies should address the impact on disruption and release of methane clathrate deposits in the deep oceans.

See also

References

  1. ^ Glover, A. G.; Smith, C. R. (2003). "The deep-sea floor ecosystem: current status and prospects of anthropogenic change by the year 2025.". Environmental Conservation 30 (3): 21–241.  

Further reading

  • Abramowski, T.; Stoyanova, V. (2012). "Deep-Sea Polymetallic Nodules: Renewed Interest as Resources for Environmentally Sustainable Development". Proc 12th International Multidisciplinary Scientific GeoConference SGEM 2012. pp. 515–522. 
  • Cronan, D. S. (1980). Underwater Minerals. London: Academic Press.  
  • Cronan, D. S. (2000). Handbook of Marine Mineral Deposits. Boca Raton: CRC Press.  
  • Cronan, D. S. (2001). "Manganese nodules". In Steele, J.; Turekian, K.; Thorpe, S. Encyclopedia of Ocean Sciences. San Diego: Academic Press. pp. 1526–1533.  
  • Earney, F. C. (1990). Marine Mineral Resources. London: Routledge.  
  • Roy, S. (1981). Manganese Deposits. London: Academic Press.  
  • Teleki, P. G.; Dobson, M. R.; Moore, J. R.; von Stackelberg, U. (1987). Marine Minerals: Advances in Research and Resource Assessment. Dordrecht: D. Riedel.  

External links

  • Report on a World Almanac 1997 documentary Universe Beneath the Sea claiming evidence of rapid formation
  • The International Seabed Authority
  • The Future of Manganese Nodules
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.