World Library  
Flag as Inappropriate
Email this Article

Molesworth (crater)

Article Id: WHEBN0022162956
Reproduction Date:

Title: Molesworth (crater)  
Author: World Heritage Encyclopedia
Language: English
Subject: Asopus Vallis, Apsus Vallis, Ausonia Montes, Ganges Mensa, Pityusa Patera
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Molesworth (crater)

Molesworth Crater
Map of Aeolis quadrangle. The Spirit Rover landed in Gusev crater. It found volcanic rocks that probably came from Apollinaris Patera. A large pile of layered rocks sits in the middle of Gale Crater.
Planet Mars
Coordinates
Eponym Percy B. Molesworth, a British astronomer (1867–1908)

Molesworth Crater is a crater in the Aeolis quadrangle of Mars, located at 27.7° south latitude and 210.9° west longitude. It is 181 km in diameter and was named after Percy B. Molesworth, a British astronomer (1867–1908).[1]

Why are Craters important?

The density of impact craters is used to determine the surface ages of Mars and other solar system bodies. [2] The older the surface, the more craters present. Crater shapes can reveal the presence of ground ice.

The area around craters may be rich in minerals. On Mars, heat from the impact melts ice in the ground. Water from the melting ice dissolves minerals, and then deposits them in cracks or faults that were produced with the impact. This process, called hydrothermal alteration, is a major way in which ore deposits are produced. The area around Martian craters may be rich in useful ores for the future colonization of Mars. [3] Studies on the earth have documented that cracks are produced and that secondary minerals veins are deposited in the cracks.[4] [5] [6] Images from satellites orbiting Mars have detected cracks near impact craters.[7] Great amounts of heat are produced during impacts. The area around a large impact may take hundreds of thousands of years to cool.[8] [9] [10] Many craters once contained lakes. [11] [12] [13] Because some crater floors show deltas, we know that water had to be present for some time. Dozens of deltas have been spotted on Mars. [14] Deltas form when sediment is washed in from a stream entering a quiet body of water. It takes a bit of time to form a delta, so the presence of a delta is exciting; it means water was there for a time, maybe for many years. Primitive organisms may have developed in such lakes; hence, some craters may be prime targets for the search for evidence of life on the Red Planet. [15]

See also


References

  1. ^ http://planetarynames.wr.usgs.gov
  2. ^ http://www.lpi.usra.edu/publications/slidesets/stones/
  3. ^ http://www.indiana.edu/~sierra/papers/2003/Patterson.html.
  4. ^ Osinski, G, J. Spray, and P. Lee. 2001. Impact-induced hydrothermal activity within the Haughton impact structure, arctic Canada: Generation of a transient, warm, wet oasis. Meteoritics & Planetary Science: 36. 731-745
  5. ^ http://www.ingentaconnect.com/content/arizona/maps/2005/00000040/00000012/art00007
  6. ^ Pirajno, F. 2000. Ore Deposits and Mantle Plumes. Kluwer Academic Publishers. Dordrecht, The Netherlands
  7. ^ Head, J. and J. Mustard. 2006. Breccia Dikes and Crater-Related Faults in Impact Craters on Mars: Erosion and Exposure on the Floor of a 75-km Diameter Crater at the Dichotomy Boundary. Special Issue on Role of Volatiles and Atmospheres on Martian Impact Craters Meteoritics & Planetary Science
  8. ^ name="news.discovery.com"
  9. ^ Segura, T, O. Toon, A. Colaprete, K. Zahnle. 2001. Effects of Large Impacts on Mars: Implications for River Formation. American Astronomical Society, DPS meeting#33, #19.08
  10. ^ Segura, T, O. Toon, A. Colaprete, K. Zahnle. 2002. Environmental Effects of Large Impacts on Mars. Science: 298, 1977-1980.
  11. ^ Cabrol, N. and E. Grin. 2001. The Evolution of Lacustrine Environments on Mars: Is Mars Only Hydrologically Dormant? Icarus: 149, 291-328.
  12. ^ Fassett, C. and J. Head. 2008. Open-basin lakes on Mars: Distribution and implications for Noachian surface and subsurface hydrology. Icarus: 198, 37-56.
  13. ^ Fassett, C. and J. Head. 2008. Open-basin lakes on Mars: Implications of valley network lakes for the nature of Noachian hydrology.
  14. ^ Wilson, J. A. Grant and A. Howard. 2013. INVENTORY OF EQUATORIAL ALLUVIAL FANS AND DELTAS ON MARS. 44th Lunar and Planetary Science Conference.
  15. ^ Newsom H. , Hagerty J., Thorsos I. 2001. Location and sampling of aqueous and hydrothermal deposits in martian impact craters. Astrobiology: 1, 71-88.


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.