World Library  
Flag as Inappropriate
Email this Article

Nicotinic acetylcholine receptor

Article Id: WHEBN0000743410
Reproduction Date:

Title: Nicotinic acetylcholine receptor  
Author: World Heritage Encyclopedia
Language: English
Subject: Neuromuscular junction, Alpha-Bungarotoxin, Neuromuscular-blocking drug, Acetylcholine, Solanaceae
Collection: Acetylcholine, Autoantigens, Cell Signaling, Ion Channels, Ionotropic Receptors
Publisher: World Heritage Encyclopedia

Nicotinic acetylcholine receptor

Nicotinic acetylcholine receptors, or nAChRs, are neuron receptor proteins that signal for muscular contractions upon a chemical stimulus. They are cholinergic receptors that form ligand-gated ion channels in the plasma membranes of certain neurons and on the presynaptic and postsynaptic sides of the neuromuscular junction. As ionotropic receptors, nAChRs are directly linked to ion channels and do not use second messengers (as metabotropic receptors do). Nicotinic acetylcholine receptors are the best-studied of the ionotropic receptors.[1]

Like the other type of acetylcholine receptor—the muscarinic acetylcholine receptor (mAChR)—the nAChR is triggered by the binding of the neurotransmitter acetylcholine (ACh). Just as muscarinic receptors are named such because they are also activated by muscarine, nicotinic receptors can be opened not only by acetylcholine but also by nicotine —hence the name "nicotinic."[1][2][3]

In insects, the cholinergic system is limited to the central nervous system.[4] In contrast, neuronal receptors are found in both the central nervous system and the peripheral nervous system of mammals. Mammalian nicotinic receptors are found in the neuromuscular junctions of somatic muscles.


  • Structure 1
  • Binding the channel 2
  • Opening the channel 3
  • Effects 4
  • Receptor regulation 5
    • Receptor desensitisation 5.1
  • Roles 6
  • Subunits 7
    • Notable variations 7.1
  • See also 8
  • References 9
  • External links 10


Nicotinic receptor structure

Nicotinic receptors, with a molecular mass of 290 kDa,[5] are made up of five subunits, arranged symmetrically around a central pore.[1] Each subunit comprises four transmembrane domains with both the N- and C-terminus located extracellularly. They possess similarities with GABAA receptors, glycine receptors, and the type 3 serotonin receptors (which are all ionotropic receptors), or the signature Cys-loop proteins.[6]

In invertebrates, nicotinic receptors are broadly classified into two subtypes based on their primary sites of expression: muscle-type nicotinic receptors and neuronal-type nicotinic receptors. In the muscle-type receptors, found at the neuromuscular junction, receptors are either the embryonic form, composed of α1, β1, γ, and δ subunits in a 2:1:1:1 ratio, or the adult form composed of α1, β1, δ, and ε subunits in a 2:1:1:1 ratio.[1][2][3][7] The neuronal subtypes are various homomeric or heteromeric combinations of twelve different nicotinic receptor subunits: α2−α10 and β2−β4. Examples of the neuronal subtypes include: (α4)32)2, (α4)22)3, and (α7)5. In both muscle-type and neuronal-type receptors, the subunits are somewhat similar to one another, especially in the hydrophobic regions.

Binding the channel

As with all ligand-gated ion channels, opening of the nAChR channel pore requires the binding of a chemical messenger. Several different terms are used to refer to the molecules that bind receptors, such as ligand. As well as the endogenous agonist acetylcholine, agonists of the nAChR are nicotine, epibatidine, and choline.

In muscle-type nAChRs, the acetylcholine binding sites are located at the α and either ε or δ subunits interface (or between two α subunits in the case of homomeric receptors) in the extracellular domain near the N terminus.[2][8] When an agonist binds to the site, all present subunits undergo a conformational change and the channel is opened[9] and a pore with a diameter of about 0.65 nm opens.[2]

Opening the channel

Nicotinic AChRs may exist in different interconvertible conformational states. Binding of an agonist stabilises the open and desensitised states. Opening of the channel allows positively charged ions to move across it; in particular, sodium enters the cell and potassium exits. The net flow of positively charged ions is inward.

The nAChR is a non-selective cation channel, meaning that several different positively charged ions can cross through.[1] It is permeable to Na+ and K+, with some subunit combinations that are also permeable to Ca2+.[2][10][11] The amount of sodium and potassium the channels allow through their pores (their conductance) varies from 50–110 pS, with the conductance depending on the specific subunit composition as well as the permeant ion.[12]

It is interesting to note that, because some neuronal nAChRs are permeable to Ca2+, they can affect the release of other neurotransmitters.[3] The channel usually opens rapidly and tends to remain open until the agonist diffuses away, which usually takes about 1 millisecond.[2] However, AChRs can sometimes open with only one agonist bound and, in rare cases, with no agonist bound, and they can close spontaneously even when ACh is bound. Therefore, ACh binding creates only a probability of pore opening, which increases as more ACh binds.[9]

The nAChR is unable to bind ACh when bound to any of the snake venom α-neurotoxins. These α-neurotoxins antagonistically bind tightly and noncovalently to nAChRs of skeletal muscles, thereby blocking the action of ACh at the postsynaptic membrane, inhibiting ion flow and leading to paralysis and death. The nAChR contains two binding sites for snake venom neurotoxins. Progress towards discovering the dynamics of binding action of these sites has proved difficult, although recent studies using normal mode dynamics[13] have aided in predicting the nature of both the binding mechanisms of snake toxins and of ACh to nAChRs. These studies have shown that a twist-like motion caused by ACh binding is likely responsible for pore opening, and that one or two molecules of α-bungarotoxin (or other long-chain α-neurotoxin) suffice to halt this motion. The toxins seem to lock together neighboring receptor subunits, inhibiting the twist and therefore, the opening motion.[14]


The activation of receptors by nicotine modifies the state of neurons through two main mechanisms. On one hand, the movement of cations causes a depolarization of the plasma membrane (which results in an excitatory postsynaptic potential in neurons), but also by the activation of voltage-gated ion channels. On the other hand, the entry of calcium acts, either directly or indirectly, on different intracellular cascades. This leads, for example, to the regulation of the activity of some genes or the release of neurotransmitters.

Receptor regulation

Receptor desensitisation

Ligand-bound desensitisation of receptors was first characterised by Katz and Thesleff in the nicotinic acetylcholine receptor.[15]

Prolonged or repeat exposure to a stimulus often results in decreased responsiveness of that receptor toward a stimulus, termed desensitisation. nAChR function can be modulated by phosphorylation[16] by the activation of second messenger-dependent protein kinases. PKA[15] and PKC[17] have been shown to phosphorylate the nAChR resulting in its desensitisation. It has been reported that, after prolonged receptor exposure to the agonist, the agonist itself causes an agonist-induced conformational change in the receptor, resulting in receptor desensitisation.[18] Desensitised receptors can revert to a prolonged open state when an agonist is bound in the presence of a positive allosteric modulator, for example PNU-120596.[19] Also, there is evidence that indicates specific chaperone molecules has regulatory effects on these receptors.[20]


The subunits of the nicotinic receptors belong to a multigene family (16 members in humans) and the assembly of combinations of subunits results in a large number of different receptors (for more information see the Ligand-Gated Ion Channel database). These receptors, with highly variable kinetic, electrophysiological and pharmacological properties, respond to nicotine differently, at very different effective concentrations. This functional diversity allows them to take part in two major types of neurotransmission. Classical synaptic transmission (wiring transmission) involves the release of high concentrations of neurotransmitter, acting on immediately neighboring receptors. In contrast, paracrine transmission (volume transmission) involves neurotransmitters released by synaptic boutons, which then diffuse through the extra-cellular medium until they reach their receptors, which may be distant. Nicotinic receptors can also be found in different synaptic locations; for example the muscle nicotinic receptor always functions post-synaptically. The neuronal forms of the receptor can be found both post-synaptically (involved in classical neurotransmission) and pre-synaptically[21] where they can influence the release of multiple neurotransmitters.


To date, 17 nAChR subunits have been identified, which are divided into muscle-type and neuronal-type subunits. Of these 17 subunits, α2−α7, and β2−β4 have been identified in humans, the remaining genes identified in chick and rat genomes.[22]

The nAChR subunits have been divided into 4 subfamilies (I-IV) based on similarities in protein sequence.[23] In addition, subfamily III has been further divided into 3 tribes.

Neuronal-type Muscle-type
α9, α10 α7, α8 1 2 3 α1, β1, δ, γ, ε
α2, α3, α4, α6 β2, β4 β3, α5
  • α genes: CHRNA1 (muscle), CHRNA2 (neuronal), CHRNA3, CHRNA4, CHRNA5, CHRNA6, CHRNA7, CHRNA8, CHRNA9, CHRNA10
  • β genes: CHRNB1 (muscle), CHRNB2 (neuronal), CHRNB3, CHRNB4
  • Other genes: CHRND (delta), CHRNE (epsilon), CHRNG (gamma)

Notable variations

Nicotinic receptors are pentamers of these subunits; i.e., each receptor contains five subunits. Thus, there is an immense potential of variation of the aforementioned subunits. However, some of them are more notable than others, to be specific, (α1)2β1δε (muscle-type), (α3)24)3 (ganglion-type), (α4)22)3 (CNS-type) and (α7)5 (another CNS-type).[24] A comparison follows:

Receptor-type Location Effect; functions Nicotinic agonists Nicotinic antagonists
Neuromuscular junction EPSP, mainly by increased Na+ and K+ permeability
autonomic ganglia EPSP, mainly by increased Na+ and K+ permeability
Heteromeric CNS-type:
Brain Post- and presynaptic excitation,[24] mainly by increased Na+ and K+ permeability. Major subtype involved in the rewarding effects of nicotine.[26]
Further CNS-type:
Brain Post- and presynaptic excitation
Homomeric CNS-type:
Brain Post- and presynaptic excitation,[24] mainly by increased Ca2+ permeability. Major subtype involved in the pro-cognitive effects of nicotine.[27] Also involved in the pro-angiogenic effects of nicotine and accelerate the progression of chronic kidney disease in smokers.[28][29]

See also


  1. ^ a b c d e f g h i j k Purves, Dale, George J. Augustine, David Fitzpatrick, William C. Hall, Anthony-Samuel LaMantia, James O. McNamara, and Leonard E. White (2008). Neuroscience (4th ed.). Sinauer Associates. pp. 122–6.  
  2. ^ a b c d e f Siegel G.J., Agranoff B.W., Fisher S.K., Albers R.W., and Uhler M.D. (1999). "Basic Neurochemistry: Molecular, Cellular and Medical Aspects". GABA Receptor Physiology and Pharmacology (6th ed.). American Society for Neurochemistry. Retrieved 2008-10-01. 
  3. ^ a b c Itier V, Bertrand D (August 2001). "Neuronal nicotinic receptors: from protein structure to function". FEBS Letters 504 (3): 118–25.  
  4. ^  
  5. ^ Unwin N. (March 4, 2005). "Refined structure of the nicotinic acetylcholine receptor at 4A resolution". Journal of Molecular Biology 346 (4): 967–89.  
  6. ^ Cascio, M. (May 7, 2004). "Structure and function of the glycine receptor and related nicotinicoid receptors". Journal of Biological Chemistry 279 (19): 19383–6.  
  7. ^ Giniatullin R, Nistri A, Yakel JL (July 2005). "In muscle, the acetylcholine ligand binds to two regions, one region is between the alpha and delta subunits and the other, between the alpha and gamma subunits. Desensitisation of nicotinic ACh receptors: shaping cholinergic signaling". Trends Neurosci. 28 (7): 371–8.  
  8. ^ Squire, Larry (2003). Fundamental neuroscience (2nd ed.). Amsterdam: Acad. Press. p. 1426.  
  9. ^ a b Colquhoun D, Sivilotti LG. (June 2004). "Function and structure in glycine receptors and some of their relatives". Trends Neurosci. 27 (6): 337–44.  
  10. ^ Beker F, Weber M, Fink RH, Adams DJ (September 2003). in rat intracardiac ganglion neurons"2+"Muscarinic and nicotinic ACh receptor activation differentially mobilize Ca. J. Neurophysiol. 90 (3): 1956–64.  
  11. ^ Weber M, Motin L, Gaul S, Beker F, Fink RH, Adams DJ (January 2005). "Intravenous anaesthetics inhibit nicotinic acetylcholine receptor-mediated currents and Ca2+ transients in rat intracardiac ganglion neurons". Br. J. Pharmacol. 144 (1): 98–107.  
  12. ^ Mishina M, Takai T, Imoto K, Noda M, Takahashi T, Numa S, Methfessel C, Sakmann B (22–28 May 1986). "Molecular distinction between fetal and adult forms of muscle acetylcholine receptor". Nature 321 (6068): 406–11.  
  13. ^ Levitt, M.; Sander, C.; Stern, P. S. (1985). "Protein normal-mode dynamics: Trypsin inhibitor, crambin, ribonuclease and lysozyme". Journal of Molecular Biology 181 (3): 423–447.  
  14. ^ Samson, A. O.; Levitt, M. (2008). "Inhibition Mechanism of the Acetylcholine Receptor by α-Neurotoxins as Revealed by Normal-Mode Dynamics". Biochemistry 47 (13): 4065–4070.  
  15. ^ a b Pitchford S, Day JW, Gordon A, Mochly-Rosen D (November 1992). "Nicotinic acetylcholine receptor desensitisation is regulated by activation-induced extracellular adenosine accumulation". Journal of Neuroscience 12 (11): 4540–4.  
  16. ^ Huganir RL, Greengard P (February 1983). "cAMP-dependent protein kinase phosphorylates the nicotinic acetylcholine receptor". Proceedings of the National Academy of Sciences of the United States of America 80 (4): 1130–4.  
  17. ^ Safran A, Sagi-Eisenberg R, Neumann D, Fuchs S (August 1987). "Phosphorylation of the acetylcholine receptor by protein kinase C and identification of the phosphorylation site within the receptor delta subunit". The Journal of Biological Chemistry 262 (22): 10506–10.  
  18. ^ Barrantes FJ (September 1978). "Agonist-mediated changes of the acetylcholine receptor in its membrane environment". Journal of Molecular Biology 124 (1): 1–26.  
  19. ^ Hurst, RS; Hajós, M; Raggenbass, M; Wall, TM; Higdon, NR; Lawson, JA; Rutherford-Root, KL; Berkenpas, MB; Hoffmann, WE; Piotrowski, DW; Groppi, VE; Allaman, G; Ogier, R; Bertrand, S; Bertrand, D; Arneric, SP (April 2005). "A novel positive allosteric modulator of the alpha7 neuronal nicotinic acetylcholine receptor: in vitro and in vivo characterization". Journal of Neuroscience 25 (17): 4396–405.  
  20. ^ Sadigh-Eteghad S, Majdi A, Talebi M, Mahmoudi J, Babri S (2015). "Regulation of nicotinic acetylcholine receptors in Alzheimer׳s disease: A possible role of chaperones".  
  21. ^ Wonnacott S (February 1997). "Presynaptic nicotinic ACh receptors". Trends in neurosciences 20 (2): 92–8.  
  22. ^ Graham A, Court JA, Martin-Ruiz CM, Jaros E, Perry R, Volsen SG, Bose S, Evans N, Ince P, Kuryatov A, Lindstrom J, Gotti C, Perry EK (2002). "Immunohistochemical localisation of nicotinic acetylcholine receptor subunits in human cerebellum". Neuroscience 113 (3): 493–507.  
  23. ^ Le Novère N, Changeux JP (February 1995). "Molecular evolution of the nicotinic acetylcholine receptor: an example of multigene family in excitable cells". Journal of molecular evolution 40 (2): 155–72.  
  24. ^ a b c d Rang, H. P. (2003). Pharmacology (5th ed.). Edinburgh: Churchill Livingstone.  
  25. ^ a b Neurosci.pharm - MBC 3320 Acetylcholine
  26. ^ Wu, J; Gao, M; Shen, JX; Shi, WX; Oster, AM; Gutkin, BS (October 2013). "Cortical control of VTA function and influence on nicotine reward.". Biochemical Pharmacology 86 (8): 1173–80.  
  27. ^ Levin, ED (May 2012). "α7-Nicotinic receptors and cognition.". Current Drug Targets 13 (5): 602–6.  
  28. ^ Lee, J; Cooke, JP (November 2012). "Nicotine and pathological angiogenesis". Life Sciences 91 (21–22): 1058–64.  
  29. ^ Jain, G; Jaimes, EA (October 2013). "Nicotine signaling and progression of chronic kidney disease in smokers.". Biochemical Pharmacology 86 (8): 1215–23.  
  30. ^ Mihalak KB, Carroll FI, Luetje CW; Carroll; Luetje (2006). "Varenicline is a partial agonist at alpha4beta2 and a full agonist at alpha7 neuronal nicotinic receptors". Mol. Pharmacol. 70 (3): 801–805.  

External links

  • Calculated spatial position of Nicotinic acetylcholine receptor in the lipid bilayer
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.