World Library  
Flag as Inappropriate
Email this Article

Noncommutative geometry

Article Id: WHEBN0000295917
Reproduction Date:

Title: Noncommutative geometry  
Author: World Heritage Encyclopedia
Language: English
Subject: Noncommutative standard model, Quantum gravity, Alain Connes, Supergeometry, Victor Ginzburg
Publisher: World Heritage Encyclopedia

Noncommutative geometry

Noncommutative geometry (NCG) is a branch of mathematics concerned with a geometric approach to noncommutative algebras, and with the construction of spaces that are locally presented by noncommutative algebras of functions (possibly in some generalized sense). A noncommutative algebra is an associative algebra in which the multiplication is not commutative, that is, for which xy does not always equal yx; or more generally an algebraic structure in which one of the principal binary operations is not commutative; one also allows additional structures, e.g. topology or norm, to be possibly carried by the noncommutative algebra of functions.


The main motivation is to extend the commutative duality between spaces and functions to the noncommutative setting. In mathematics, spaces, which are geometric in nature, can be related to numerical functions on them. In general, such functions will form a commutative ring. For instance, one may take the ring C(X) of continuous complex-valued functions on a topological space X. In many cases (e.g., if X is a compact Hausdorff space), we can recover X from C(X), and therefore it makes some sense to say that X has commutative topology.

More specifically, in topology, compact Hausdorff topological spaces can be reconstructed from the Banach algebra of functions on the space (Gel'fand-Neimark). In commutative algebraic geometry, algebraic schemes are locally prime spectra of commutative unital rings (A. Grothendieck), and schemes can be reconstructed from the categories of quasicoherent sheaves of modules on them (P. Gabriel-A. Rosenberg). For Grothendieck topologies, the cohomological properties of a site are invariant of the corresponding category of sheaves of sets viewed abstractly as a topos (A. Grothendieck). In all these cases, a space is reconstructed from the algebra of functions or its categorified version—some category of sheaves on that space.

Functions on a topological space can be multiplied and added pointwise hence they form a commutative algebra; in fact these operations are local in the topology of the base space, hence the functions form a sheaf of commutative rings over the base space.

The dream of noncommutative geometry is to generalize this duality to the duality between

  • noncommutative algebras, or sheaves of noncommutative algebras, or sheaf-like noncommutative algebraic or operator-algebraic structures
  • and geometric entities of certain kind,

and interact between the algebraic and geometric description of those via this duality.

Regarding that the commutative rings correspond to usual affine schemes, and commutative C*-algebras to usual topological spaces, the extension to noncommutative rings and algebras requires non-trivial generalization of topological spaces, as "non-commutative spaces". For this reason, some talk about non-commutative topology, though the term also has other meanings.

Applications in mathematical physics

Some applications in particle physics are described on the entries Noncommutative standard model and Noncommutative quantum field theory. Sudden rise in interest in noncommutative geometry in physics, follows after the speculations of its role in M-theory made in 1997.[1]

Motivation from ergodic theory

Some of the theory developed by group actions would become homogeneous spaces of an extended kind, has by now been subsumed.

Noncommutative C*-algebras, von Neumann algebras

(The formal duals of) non-commutative C*-algebras are often now called non-commutative spaces. This is by analogy with the Gelfand representation, which shows that commutative C*-algebras are dual to locally compact Hausdorff spaces. In general, one can associate to any C*-algebra S a topological space Ŝ; see spectrum of a C*-algebra.

For the duality between σ-finite measure spaces and commutative von Neumann algebras, noncommutative von Neumann algebras are called non-commutative measure spaces.

Noncommutative differentiable manifolds

A smooth Riemannian manifold M is a topological space with a lot of extra structure. From its algebra of continuous functions C(M) we only recover M topologically. The algebraic invariant that recovers the Riemannian structure is a spectral triple. It is constructed from a smooth vector bundle E over M, e.g. the exterior algebra bundle. The Hilbert space L2(M,E) of square integrable sections of E carries a representation of C(M) by multiplication operators, and we consider an unbounded operator D in L2(M,E) with compact resolvent (e.g. the signature operator), such that the commutators [D,f] are bounded whenever f is smooth. A recent deep theorem[2] states that M as a Riemannian manifold can be recovered from this data.

This suggests that one might define a noncommutative Riemannian manifold as a spectral triple (A,H,D), consisting of a representation of a C*-algebra A on a Hilbert space H, together with an unbounded operator D on H, with compact resolvent, such that [D,a] is bounded for all a in some dense subalgebra of A. Research in spectral triples is very active, and many examples of noncommutative manifolds have been constructed.

Noncommutative affine and projective schemes

In analogy to the duality between affine schemes and commutative rings, we define a category of noncommutative affine schemes as the dual of the category of associative unital rings. There are certain analogues of Zariski topology in that context so that one can glue such affine schemes to more general objects.

There are also generalizations of the Cone and of the Proj of a commutative graded ring, mimicking a Serre's theorem on Proj. Namely the category of quasicoherent sheaves of O-modules on a Proj of a commutative graded algebra is equivalent to the category of graded modules over the ring localized on Serre's subcategory of graded modules of finite length; there is also analogous theorem for coherent sheaves when the algebra is Noetherian. This theorem is extended as a definition of noncommutative projective geometry by Michael Artin and J. J. Zhang,[3] who add also some general ring-theoretic conditions (e.g. Artin-Schelter regularity).

Many properties of projective schemes extend to this context. For example, there exist an analog of the celebrated Serre duality for noncommutative projective schemes of Artin and Zhang.[4]

A. L. Rosenberg has created a rather general relative concept of noncommutative quasicompact scheme (over a base category), abstracting the Grothendieck's study of morphisms of schemes and covers in terms of categories of quasicoherent sheaves and flat localization functors.[5] There is also another interesting approach via localization theory, due to Fred Van Oystaeyen, Luc Willaert and Alain Verschoren, where the main concept is that of a schematic algebra.[6]

Invariants for noncommutative spaces

Some of the motivating questions of the theory are concerned with extending known topological invariants to formal duals of noncommutative (operator) algebras and other replacements and candidates for noncommutative spaces. One of the main starting points of the Alain Connes' direction in noncommutative geometry is his discovery (and independently by Boris Tsygan) of a new homology theory associated to noncommutative associative algebras and noncommutative operator algebras, namely the cyclic homology and its relations to the algebraic K-theory (primarily via Connes-Chern character map).

The theory of characteristic classes of smooth manifolds has been extended to spectral triples, employing the tools of operator K-theory and cyclic cohomology. Several generalizations of now classical index theorems allow for effective extraction of numerical invariants from spectral triples. The fundamental characteristic class in cyclic cohomology, the JLO cocycle, generalizes the classical Chern character.

Examples of noncommutative spaces

  • The noncommutative torus, deformation of the function algebra of the ordinary torus, can be given the structure of a spectral triple. This class of examples has been studied intensively and still functions as a test case for more complicated situations.
  • Noncommutative algebras arising from foliations.
  • Examples related to dynamical systems arising from number theory, such as the Gauss shift on continued fractions, give rise to noncommutative algebras that appear to have interesting noncommutative geometries.

See also


  1. ^ Alain Connes, Michael R. Douglas, Albert Schwarz, Noncommutative geometry and matrix theory: compactification on tori. J. High Energy Phys. 1998, no. 2, Paper 3, 35 pp. doi, hep-th/9711162
  2. ^ Connes, Alain, On the spectral characterization of manifolds, arXiv:0810.2088v1
  3. ^ M. Artin, J. J. Zhang, Noncommutative projective schemes, Adv. Math. 109 (1994), no. 2, 228--287, doi
  4. ^ Amnon Yekutieli, James J. Zhang, Serre duality for noncommutative projective schemes, Proc. Amer. Math. Soc. 125, n. 3, 1997, 697-707, pdf
  5. ^ A. L. Rosenberg, Noncommutative schemes, Compositio Math. 112 (1998) 93--125, doi; Underlying spaces of noncommutative schemes, preprint MPIM2003-111, dvi, ps; MSRI lecture Noncommutative schemes and spaces (Feb 2000): video
  6. ^ Freddy van Oystaeyen, Algebraic geometry for associative algebras, ISBN 0-8247-0424-X - New York: Dekker, 2000.- 287 p. - (Monographs and textbooks in pure and applied mathematics , 232); F. van Oystaeyen, L. Willaert, Grothendieck topology, coherent sheaves and Serre's theorem for schematic algebras, J. Pure Appl. Alg. 104 (1995), p. 109--122
  7. ^ H. S. Snyder, Quantized Space-Time, Phys. Rev. 71 (1947) 38


Further reading

External links

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.