World Library  
Flag as Inappropriate
Email this Article

Northrop Grumman E-2 Hawkeye

Article Id: WHEBN0000056075
Reproduction Date:

Title: Northrop Grumman E-2 Hawkeye  
Author: World Heritage Encyclopedia
Language: English
Subject: Grumman G-118, Northrop Grumman RQ-180, General Dynamics–Grumman F-111B, Grumman F-11 Tiger, Grumman F2F
Publisher: World Heritage Encyclopedia

Northrop Grumman E-2 Hawkeye

E-2 Hawkeye
Two US Navy E-2C Hawkeyes flying by Mount Fuji, Japan
Role Airborne early warning and control
Manufacturer Grumman
Northrop Grumman
First flight 21 October 1960
Introduction January 1964
Status In service
Primary users United States Navy
(See operators below)
Produced 1960-present
Unit cost
US$176 million (FY2012 flyaway cost)[1]
Variants Grumman C-2 Greyhound

The Northrop Grumman E-2 Hawkeye is an American all-weather, carrier-capable tactical airborne early warning (AEW) aircraft. This twin-turboprop aircraft was designed and developed during the late 1950s and early 1960s by the Grumman Aircraft Company for the United States Navy as a replacement for the earlier E-1 Tracer, which was rapidly becoming obsolete. The aircraft's performance has been upgraded with the E-2B, and E-2C versions, where most of the changes were made to the radar and radio communications due to advances in electronic integrated circuits and other electronics. The fourth version of the Hawkeye is the E-2D, which first flew in 2007. The E-2 was the first aircraft designed specifically for its role, as opposed to a modification of an existing airframe, such as the Boeing E-3 Sentry. Variants of the Hawkeye have been in continuous production since 1960, giving it the longest production run of any carrier-based aircraft.

The E-2 also received the nickname "Super Fudd"[2] because it replaced the E-1 Tracer "Willy Fudd". In recent decades, the E-2 has been commonly referred to as the "Hummer" because of the distinctive sounds of its turboprop engines, quite unlike that of turbojet and turbofan jet engines. In addition to U.S. Navy service, smaller numbers of E-2s have been sold to the armed forces of Egypt, France, Israel, Japan, Mexico, Singapore and Taiwan.



Continual improvements in airborne radars through 1956 led to the construction of AEW airplanes by several different countries and several different armed forces. The functions of command and control and sea & air surveillance were also added. The first carrier-based aircraft to perform these missions for the U.S. Navy and its allies was the Douglas AD Skyraider, which was replaced in US Navy service by the Grumman E-1 Tracer, which was a modified version of the S-2 Tracker twin-engine anti-submarine warfare aircraft, where the radar was carried in an aerofoil-shaped radome carried above the aircraft's fuselage.[3] The E-1 was used by the U.S. Navy from 1958 to 1977.

E-2A and E-2B Hawkeye

In 1956, the U.S. Navy developed a requirement for an airborne early warning aircraft where its data could be integrated into the Naval Tactical Data System aboard the Navy's ships, with a design from Grumman being selected to meet this requirement in March 1957.[4] Its design, initially designated W2F-1, but later redesignated the E-2A Hawkeye, was the first carrier plane that had been designed from its wheels up as an AEW and command and control airplane. The problems facing the design engineers at Grumman were immense, and were compounded by having to constrain the design to enable the aircraft to operate from the older modified Essex-class aircraft carriers. These ‘smaller’ carriers were built during World War II and later modified to allow them to operate jet aircraft. Consequently, various height, weight and length restrictions had to be factored into the E-2A design, resulting in some handling characteristics which were less than ideal. The E-2A actually never operated from the modified Essex class carriers, and it is likely the design would have benefited considerably if this requirement had never been imposed.

The first prototype, acting as an aerodynamic testbed only, flew on 21 October 1960. The first fully equipped aircraft followed it on 19 April 1961, and entered service with the US Navy as the E-2A in January 1964.[5] By 1965 the major development problems delaying the E-2A Hawkeye got so bad that the aircraft was actually cancelled after 59 aircraft had already been built. Particular difficulties were being experienced due to inadequate cooling in the closely packed avionics compartment. Early computer and complex avionics systems generated considerable heat; without proper ventilation this would lead to system failures. These failures continued long after the aircraft entered service and at one point reliability was so bad the entire fleet of aircraft was grounded. The airframe was also prone to corrosion, a serious problem in a carrier based aircraft.

After Navy officials had been forced to explain to Congress why four production contracts had been signed before avionics testing had been completed, action was taken; Grumman and the US Navy scrambled to improve the design. The unreliable rotary drum computer was replaced by a Litton L-304 digital computer[6] and various avionics systems were replaced – the upgraded aircraft were designated E-2Bs. In total, 49 of the 59 E-2As were upgraded to E-2B standard. These aircraft replaced the E-1B Tracers in the various US Navy AEW squadrons and it was the E-2B that was to set a new standard for carrier based AEW aircraft.

E-2C Hawkeye and developments

Although the upgraded E-2B was a vast improvement on the unreliable E-2A, it was an interim measure. The US Navy knew the design had much greater capability and had yet to achieve the performance and reliability parameters set out in the original 1957 design. In April 1968 a reliability improvement program was instigated. In addition, now that the capabilities of the aircraft were starting to be realized, more were desired; 28 new E-2Cs were ordered to augment the 49 E-2Bs that would be upgraded. Improvements in the new and upgraded aircraft were concentrated in the radar and computer performance.

Two E-2A test machines were modified as E-2C prototypes, the first flying on 20 January 1971. Trials proved satisfactory and the E-2C was ordered into production, the first production machine performed its initial flight on 23 September 1972. The original E-2C, known as Group 0, consisted of 55 aircraft; the first aircraft became operational in 1973 and serving on carriers in the 1980s and 1990s, until they were replaced in first-line service by Group II aircraft. US Navy Reserve used some aircraft for tracking drug smugglers. The type was commonly used in conjunction with Grumman F-14 Tomcat fighters; monitoring airspace and then vectoring Tomcats over the Link-4A datalink to destroy potential threats with long range AIM-54-C Phoenix missiles.

The next production run, between 1988 and 1991, saw 18 aircraft built to the Group I standard. Group I aircraft replaced the E-2's older APS-125 radar and T56-A-425 turboprops with their successors, the APS-139 radar system and T56-A-427 turboprops. The first Group I aircraft entered service on August 1981. Upgrading the Group 0 aircraft to Group 1 specifications was considered, but the cost was comparable to a new production aircraft, so upgrades were not conducted. Group 1 aircraft were only flown by the Atlantic fleet squadrons. This version was followed within a few years by the Group II, which had the improved APS-145 radar. A total of 50 Group II aircraft were delivered, 12 being upgraded Group I aircraft. This new version entered service in June 1992 and served with the Pacific and Atlantic Fleet squadrons.

By 1997 the US Navy intended that all front line squadrons would be equipped, for a total of 75 Group II aircraft. Grumman merged with Northrop in 1994 and plans began on the next upgrade, known as the Group II Plus, later known as the Hawkeye 2000. The Hawkeye 2000 featured the APS-145 radar with a new mission computer and CIC (Combat Information Center) workstations (Advanced Control Indicator Set or ACIS), and carries the U.S. Navy’s new CEC (cooperative engagement capability) data-link system. It is also fitted with a larger capacity vapor cycle avionics cooling system. A variant of the Group II with the upgrades to the mission computer and CIC workstations is referred to as the MCU/ACIS. All Group II aircraft have had their 1960s vintage computer-processors replaced by a mission computer with the same functionality that used more modern computer technology, referred to as the GrIIM RePr (Group II Mission Computer Replacement Program, pronounced "grim reaper").[7]

In 2004, the E-2C's propeller system was changed; a new eight-bladed propeller system named NP2000 was developed by the Hamilton-Sundstrand company to replace the old four-bladed design. Improvements included better fuel economy as a result of increased efficiency, reduced vibrations and better maintainability as a result of the ability to remove prop blades individually instead of having to remove the entire prop and hub assembly.[8] The system had previously been used in the C-130 Hercules, which also uses the T-56 engine, to great effect. The propeller blades are of carbon fiber construction with steel leading edge inserts and de-icing boots at the root of the blade.[9]

Starting in 2007 a hardware and software upgrade package began to be added to existing Hawkeye 2000 aircraft. This upgrade allows faster processing, double current trackfile capacity and access to satellite information networks. Hawkeye 2000 cockpits being upgraded include solid-state glass displays, modern weather detection systems and a GPS-approach capability.[10]

E-2D Advanced Hawkeye

External images
Hi-res cutaway diagram
Cutaway diagram of E-2D Advanced Hawkeye

Once considered for replacement by the "Common Support Aircraft", this concept was abandoned. The latest E-2 version is the E-2D Advanced Hawkeye, which features an entirely new avionics suite including the new APY-9 radar, radio suite, mission computer, integrated satellite communications, flight management system, improved T56-A-427A engines, a glass cockpit and changes later enable air-to-air refueling. The APY-9 radar features an active electronically scanned array, which adds electronic scanning to the mechanical rotation of the radar in its radome. The E-2D will include provisions for the copilot to act as a "Tactical 4th Operator" (T4O), who can reconfigure his main cockpit display to show radar, IFF, and Link 16 (JTIDS)/CEC, and access all acquired data. The E-2D's first flight occurred on 3 August 2007.[11] On 8 May 2009, an E-2D used its Cooperative Engagement Capability system to engage an overland cruise missile with a Standard Missile SM-6 fired from another platform in an integrated fire-control system test.[12] These two systems will form the basis of the Naval Integrated Fire Control – Counter Air (NIFC-CA) when fielded in 2015; the USN is investigating adding other systems to the NIFC-CA network in the future.[13]

The APY-9 radar has been suspected of being capable of detecting fighter-sized stealth aircraft, which are typically optimized against high frequencies like Ka, Ku, X, C, and parts of the S-bands. Small aircraft lack the size or weight allowances for all-spectrum low-observable features, leaving a vulnerability to detection by the UHF-band APY-9 radar, potentially detecting fifth-generation fighters like the Russian Sukhoi PAK FA and the Chinese Chengdu J-20 and Shenyang J-31. Historically, UHF radars had resolution and detection issues that made them ineffective for accurate targeting and fire control; Northrop Grumman and Lockheed claim that the APY-9 has solved these shortcomings in the APY-9 using advanced electronic scanning and high digital computing power via space/time adaptive processing. According to the Navy's NIFC-CA concept, the E-2D could guide fleet weapons, such as AIM-120 AMRAAM and SM-6 missiles, onto targets beyond a launch platform's detection range or capabilities.[14]

Deliveries of initial production E-2Ds began in 2010.[15] On 4 February 2010, Delta One conducted the first E-2D carrier landing aboard USS Harry S. Truman as a part of carrier suitability testing.[16] On 27 September 2011, an E-2D was successfully launched by the prototype Electromagnetic Aircraft Launch System (EMALS) at Naval Air Engineering Station Lakehurst.[17][18] On 12 February 2013, the Office of the Secretary of Defense approved the E-2D to enter full-rate production. The Navy plans for an initial operational capability by 2015.[19] In June 2013, the 10th E-2D was delivered to the Navy, with an additional 10 aircraft in various stages of manufacturing and predelivery flight testing. On 18 July 2013, Northrop Grumman was awarded a $113.7 million contract for five full-rate production Lot 2 E-2D Advanced Hawkeye aircraft.[20] On 13 August 2013, Northrop Grumman was awarded a $617 million contract for five E-2Ds until full-rate production Lot 1.[21] On 30 June 2014, Northrop Grumman was awarded a $3.6 billion contract to supply 25 more E-2Ds, for a total contracted number of 50 aircraft; 13 E-2D models had been delivered by that point.[22] The Navy announced in October 2014 that the first E-2D squadron, VAW-125, is now operational. The first five aircraft are assigned to the USS Theodore Roosevelt (CVN-71) and will deploy on the carrier in 2015.[23]


Ripples appear along the fuselage of a US Navy E-2C due to loads from landing on USS Harry S. Truman (CVN-75)

The E-2 is a high-wing airplane, with one turboprop engine on each wing and retractable tricycle landing gear. As with most carrier-borne airplanes, the E-2 is equipped with a tail hook for landings, and it is capable of using the aircraft carrier's catapults for takeoff. A distinguishing feature of the Hawkeye is its 24-foot (7.3 m) diameter rotating dome that is mounted above its fuselage and wings. This carries the E-2's primary antennas for its long-range radar and IFF systems. No other carrier-borne aircraft possesses one of these, and among land-based aircraft, they are mostly seen atop the Boeing E-3 Sentry, a larger AWACS airplane operated by the U.S. Air Force and NATO air forces in large numbers.

The aircraft is operated by a crew of five, with the pilot and co-pilot on the flight deck and the combat information center officer, air control officer and radar operator stations located in the rear fuselage directly beneath the rotodome.

In U.S. service, the E-2 Hawkeye provides all-weather airborne early warning and command and control capabilities for all aircraft-carrier battle groups. In addition, its other purposes include sea and land surveillance, the control of the aircraft carrier's fighter planes for air defense, the control of strike aircraft on offensive missions, the control of search and rescue missions for naval aviators and sailors lost at sea, and for the relay of radio communications, air-to-air and ship-to-air. It can also serve in an air traffic control capacity in emergency situations when land-based ATC is unavailable.

The E-2C and E-2D Hawkeyes use advanced electronic sensors combined with digital computerized signal processing, especially its radars, for early warning of enemy aircraft attacks and anti-ship missile attacks, and the control of the carrier's combat air patrol (CAP) fighters, and secondarily for surveillance of the surrounding sea and land for enemy warships and guided-missile launchers, and any other electronic surveillance missions as directed.

Operational history

US Navy

A US Navy E-2C of VAW-117 approaches the flight deck of USS John C. Stennis (CVN-74). Note the eight-bladed propellers

The E-2A entered U.S. Navy service on January 1964, and in April 1964 with VAW-11 at NAS North Island.[5] The first deployment was aboard USS Kitty Hawk (CVA-63) during 1965.[24]

Since entering combat during the Vietnam War, the E-2 has served the US Navy around the world, acting as the electronic "eyes of the fleet". In August 1981, a Hawkeye from VAW-124 "Bear Aces" directed two F-14 Tomcats from VF-41 "Black Aces" in an intercept mission in the Gulf of Sidra that resulted in the downing of two Libyan Sukhoi Su-22s. Hawkeyes from VAW-123 aboard the aircraft carrier USS America (CV-66) directed a group of F-14 Tomcat fighters flying the Combat Air Patrol during Operation El Dorado Canyon, the joint strike of two Carrier Battle Groups in the Mediterranean Sea against Libyan terrorist targets during 1986. More recently, E-2Cs provided the command and control for both aerial warfare and land-attack missions during the Persian Gulf War. Hawkeyes have supported the U.S. Coast Guard, the U.S. Customs Service, and American federal and state police forces during anti-drug operations.

In the mid-1980s, several E-2Cs were borrowed from the U.S. Navy and given to the U.S. Coast Guard and the U.S. Customs Service for counternarcotics (CN) and maritime interdiction operations (MIO). This also led to the Coast Guard building a small cadre of Naval Flight Officers (NFOs), starting with the recruitment and interservice transfer of Navy flight officers with E-2 flight experience and the flight training of other junior Coast Guard officers as NFOs. A fatal aircraft mishap on 24 August 1990 involving a Coast Guard E-2C at the former Naval Station Roosevelt Roads in Puerto Rico[25] prompted the Coast Guard to discontinue flying E-2Cs and to return its E-2Cs to the Navy. The U.S Customs Service also returned its E-2Cs to the Navy and concentrated on the use of former U.S. Navy P-3 Orion aircraft in the CN role.

Hawkeye interior (Group 0 configuration)

E-2C Hawkeye squadrons played a critical role in air operations during Operation Desert Storm. In one instance, a Hawkeye crew provided critical air control direction to two F/A-18 Hornet aircrew, resulting in the shootdown of two Iraqi MiG-21s. During Operations Southern Watch and Desert Fox, Hawkeye crews continued to provide thousands of hours of air coverage, while providing air-to-air and air-to-ground command and control in a number of combat missions.

The E-2 Hawkeye is a crucial component of all U.S. Navy [26][27]

During Operation Enduring Freedom and Operation Iraqi Freedom all ten Regular Navy Hawkeye squadrons flew overland sorties. They provided battle management for attack of enemy ground targets, close-air-support coordination, combat search and rescue control, airspace management, as well as datalink and communication relay for both land and naval forces. During the aftermath of Hurricane Katrina, three Hawkeye squadrons (two Regular Navy and one Navy Reserve) were deployed in support of civilian relief efforts including Air Traffic Control responsibilities spanning three states, and the control of U.S. Army, U.S. Navy, U.S. Air Force, U.S. Marine Corps, U.S. Coast Guard, and Army National Guard and Air National Guard helicopter rescue units.

The cockpit of a E-2C Hawkeye of United States Navy VAW-115.

Hawkeye 2000s first deployed in 2003 aboard Operation Inherent Resolve against the Islamic State.[28]

VAW-120, the E-2C fleet replacement squadron began receiving E-2D Advanced Hawkeyes for training use in July 2010.[29] On 27 March 2014, the first E-2Ds were delivered to the Airborne Early Warning Squadron 125 (VAW-125).[30] The E-2D achieved Initial Operational Capability (IOC) in October 2014 when VAW-125 was certified to have five operational aircraft. This began training on the aircraft for its first operational deployment, scheduled for 2015 aboard USS Theodore Roosevelt (CVN-71).[31] The E-2D will play a larger role than that of the E-2C, with five E-2Ds aboard each carrier instead of the current four C-models, requiring the acquisition of 75 more E-2Ds.[28]

Other operators

E-2 Hawkeyes have been sold by the U.S. Federal Government under Foreign Military Sales (FMS) procedures to the armed forces of Egypt, France, Israel, Japan, Singapore and Taiwan .[32]

French Naval Aviation

French Navy Hawkeye with folded wings

The French Naval Aviation (Aeronavale) operates three E-2C Hawkeyes and has been the only operator of the E-2 Hawkeye from an aircraft carrier besides the U.S. Navy.[33] The French nuclear-powered carrier, Charles De Gaulle, currently carries two E-2C Hawkeyes on her combat patrols offshore. The three French E-2C Hawkeye have been upgraded with eight-bladed propellers as part of the NP2000 program. In April 2007, France requested the foreign military sale (FMS) of an additional aircraft.

The Flotille 4F of the French Navy's Aeronavale was stood up on 2 July 2000 and flies its E-2C Hawkeyes from its naval air station at Lann-Bihoue or Charles de Gaulle aircraft carrier. They took part in operations in Afghanistan and Libya.[34]

Japan Air Self-Defense Force

The Japan Air Self-Defense Force bought thirteen E-2C to improve its Early warning capabilities. The E-2C was put into service with the Airborne Early Warning Group (AEWG) at Misawa Air Base in January 1987.

On 6 September 1976, Soviet Air Force pilot Viktor Belenko successfully defected, landing his MiG-25 'Foxbat' at Hakodate Airport, Japan. During this incident, the Japan Self-Defense Forces' radar lost track of the aircraft when Belenko flew his MiG-25 at a low altitude, prompting the JASDF to consider procurement of airborne early warning aircraft.

Initially, the E-3 Sentry airborne warning and control system aircraft was considered to be the prime candidate for the airborne early warning mission by the JASDF. However, the Japanese Defense Agency realized that the E-3 would not be readily available due to USAF needs and opted to procure E-2 Hawkeye aircraft.

On 21 November 2014, the Japanese Ministry of Defense officially decided to procure the E-2D version of the Hawkeye, beating out the Boeing 737 AEW&C design.[35]


In 2004, three former Israel Air Force E-2C aircraft were sold to the Mexican Navy to perform maritime and shore surveillance missions. These aircraft were upgraded locally by IAI. The first Mexican E-2C was rolled out in January 2004.


An E-2C Hawkeye (RSAF serial 015) of 111 Sqn on static display at Paya Lebar Air Base, 2006

The Republic of Singapore Air Force acquired four Grumman E-2C Hawkeye airborne early warning aircraft in 1987, which are assigned to the 111 Squadron "Jaeger" based at Tengah Air Base.

In April 2007, it was announced that the four E-2C Hawkeyes were to be replaced with four Gulfstream G550s which would become the primary early warning aircraft of the Singapore Air Force. On 13 April 2012, the newer G550 AEWs officially took over duty from the former.[36][37][38]


Israel was the first export customer, its four Hawkeyes were delivered during 1981, complete with the folding wings characteristic of carrier-borne aircraft. The four examples were soon put into active service before and during the 1982 Lebanon War during which they won a resounding victory over Syrian air defenses and fighter control. They were central to the Israeli victory in the air battles over the Bekaa Valley during which more than 90 Syrian fighters were downed. The Hawkeyes were also the linchpins of the operation in which the IAF destroyed the SAM array in the Bekaa, coordinating the various stages of the operation, vectoring planes into bombing runs and directing intercepts. Under the constant defense of F-15 Eagles, there were always two Hawkeyes on station off the Lebanese coast, controlling the various assets in the air and detecting any Syrian aircraft upon their takeoff, eliminating any chance of surprise.

The Israeli Air Force (IAF) operated four E-2s[33] for its homeland AEW protection through 1994. The IAF was the first user of the E-2 to install air-to-air refueling equipment.

Three of the four Israeli-owned Hawkeyes were sold to Mexico[33] in 2002 after they had been upgraded with new systems; the remaining example was sent to be displayed in the Israeli Air Force Museum. In 2010, Singapore began retiring its E-2Cs as well. Both Israel and Singapore now employ the IAI Eitam, a Gulfstream G550-based platform utilizing Elta's EL/W-2085 sensor package (a newer derivative of the airborne Phalcon system) for their national AEW programmes.[39]

Taiwan (Republic of China)

ROCAF E-2K at Songshan Air Force Base, 2011

Taiwan acquired four E-2T aircraft from the US on 22 November 1995. On 15 April 2006 Taiwan commissioned two new E-2K Hawkeyes at an official ceremony at the Republic of China Air Force (ROCAF) base in Pingtung Airport in southern Taiwan.

The four E-2Ts were approved for upgrade to Hawkeye 2000 configuration in a 2008 arms deal.[40][41][42] The four E-2T aircraft were upgraded to what became known as E-2K standard in two batches, the first batch of two aircraft were sent to the United States in June 2010, arriving home in late 2011; on their return the second batch of two aircraft were sent for upgrade returning, to Taiwan, in March 2013.[43]


Egypt purchased five E-2C Hawkeyes, that entered service in 1987 and were upgraded to Hawkeye 2000 standard. One additional upgraded E-2C was purchased. The first upgraded aircraft was delivered in March 2003 and deliveries were concluded in late 2008. Egypt requested two additional excess E-2C aircraft in October 2007, that were not sold. They all operate in 601 AEW Brigade, Cairo-West.


In August 2009, the U.S. Navy and Northrop Grumman briefed the Indian Navy on the E-2D Advanced Hawkeye on its potential use to satisfy its current shore-based and future carrier-based Airborne Early Warning and Control (AEW&C) requirements. The Indian Navy has reportedly expressed interest in acquiring up to six Hawkeyes.[44][45][46]


E-2A of VAW-11 landing in 1966 on the USS Coral Sea (CV-43)
A VAW-113 E-2B after landing on the USS Coral Sea in 1979
A U.S. Navy E-2C Hawkeye launches from USS John C. Stennis
Original designation of the Hawkeye, changed to E-2A in 1962.
Initial production version, was W2F-1 before 1962. 59 built.[24]
Two E-2As converted as crew trainers.[24]
Two E-2As, BUNOs 148147 and 148148, converted as prototypes of the C-2 Greyhound
As E-2A but fitted with improved computing, enlarged outer fins. 52 converted from E-2A.[24]
Two E-2As, BUNOs 148712 and 148713, converted as E-2C prototypes. Designated as YE-2C and NE-2C respectively. These airframes then finished out their useful life being used as TE-2C pilot trainers.
As the E-2B but with all new electronics, surveillance radar and search radar, 63 built. In "plus-models" the E-2C also has upgraded turboprop engines.
E-2C Group 0
Initial production version of E-2C, fitted with AN/APS-120 or AN/APS-125 radar. Lengthened nose compared to earlier versions[47][48]
E-2C Group I
New radar (AN/APS-139), plus ungraded mission computer and upgraded engines. 18 new build aircraft.[48][49]
E-2C Group 2
AN/APS-145 radar, further improved electronics.[48][49]
E-2C Hawkeye 2000
New mission computer, Cooperative Engagement Capability (CEC and additional satellite communications aerial. Originally designated Group 2+.[48][49]
Currently undergoing flight testing and Initial Operational Test and Evaluation. This version will feature an entirely new avionics suite, improved engines, a new "glass cockpit" and the potential for air-to-air refueling.
E-2C variant for Republic of China (Taiwan), with parts taken from retired E-2Bs (USN BuNos 151709, 151710, 151724, 152479) in order to please objections from the People's Republic of China and to make it appear as a sale of four rebuilt E-2As or E-2Bs. However, these aircraft have the same level of electronics as the E-2C Group II Hawkeyes with their APS-145 radars.[40][50][51]


French Naval Aviation Hawkeye preparing to be catapulted from the French aircraft carrier Charles De Gaulle.
 Taiwan (Republic of China)
An E-2C Hawkeye, attached to the Screwtops of Carrier Airborne Early Warning Squadron VAW-123, performs a fly-by.
 United States

former operators

 United States

Aircraft on display

Specifications (E-2C/D)

Data from US Navy fact file[71] E-2D_Storybook (page 25)[72]

General characteristics
  • Crew: Five: Pilot, Copilot, Radar Officer (RO), Combat Information Center Officer (CICO), Aircraft Control Officer (ACO)
  • Length: 57 ft 8.75 in (17.60 m)
  • Wingspan: 80 ft 7 in (24.56 m)
  • Height: 18 ft 3.75 in (5.58 m)
  • Wing area: 700 ft²[73] (65 m²)
  • Empty weight: 40,200 lb (18,090 kg)
  • Loaded weight: 43,068 lb (19,536 kg)
  • Max. takeoff weight: 57,500 lb (26,083 kg)
  • Powerplant: 2 × Allison / Rolls-Royce T56-A-427 (E-2C), T56-A-427A (E-2D) turboprop, 5,100 shp (3,800 kW) each


AN/APS-145 Radar, OL-483/AP IFF interrogator system, APX-100 IFF Transponder, OL-698/ASQ Tactical Computer Group, AN/ARC-182 UHF/VHF radio, AN/ARC-158 UHF radio, AN/ARQ-34 HF radio, AN/USC-42 Mini-DAMA SATCOM system

See also

Related development
Aircraft of comparable role, configuration and era


  1. ^ "Fiscal Year (FY) 2012) Budget Estimates Aircraft Procurement, Navy". Department of the Navy. February 2011. p. 167.  6 E-2D are being procured in FY2012, for a total flyaway cost of $1,033.891312m and a procurement cost of 1,275.046m.
  2. ^ Koppmann, George C., Carrier Airborne Early Warning. George C. Koppmann (LT, USNR - inactive) home page. [1] Retrieved: 13 December 2006.
  3. ^ Godfrey 1977, pp. 7–8.
  4. ^ Swanborough and Bowers 1976, p. 244.
  5. ^ a b Taylor 1976, p. 291.
  6. ^
  7. ^
  8. ^
  9. ^
  10. ^
  11. ^ "Northrop Grumman E-2D Advanced Hawkeye Completes First Flight". Northrop Grumman, 3 August 2007.
  12. ^ Integrated Live-Fire Test Demonstrates Future Weapons System Capability
  13. ^ Osborn, Kris (22 May 2014). "Navy Considers it’s Beyond-the-Horizon Future". (Monster). Retrieved 23 May 2014. 
  14. ^ The U.S. Navy’s Secret Counter-Stealth Weapon Could Be Hiding in Plain Sight -, 9 June 2014
  15. ^ "Northrop Grumman's E-2D Advanced Hawkeye Program Demonstrating Continued Success". Northrop Grumman, 9 December 2009.
  16. ^ [2]
  17. ^ "'"Navy's new electromagnetic catapult 'real smooth. Newbury Park Press. 28 September 2011. Retrieved 2011-10-04. 
  18. ^ "New carrier launch system tested". Security Industry.  
  19. ^ Pentagon approves E-2D Hawkeye full rate production -, February 12, 2013
  20. ^ US Navy Orders Five Lot 2 Full Rate Production E-2D Advanced Hawkeyes -, 18 July 2013
  21. ^ Northrop Grumman Awarded $617 Million for Full-Rate Production E-2D Advanced Hawkeyes -, 13 August 2013
  22. ^ US Navy orders additional E-2D AEW&C aircraft -, 1 July 2014
  23. ^ Butler, Amy, Ready to sail, Aviation Week and Space Technology, October 27, 2014
  24. ^ a b c d Godfrey 1977, p.8.
  25. ^ U.S. Coast Guard Aviation Casualties
  26. ^
  27. ^
  28. ^ a b E-2D Hits IOC- Breaking Defense, 17 October 2014
  29. ^ Wiltrout, Kate (30 July 2010), "Navy welcomes Advanced Hawkeye, newest eye in the sky", The Virginian-Pilot 
  30. ^ E-2D Advanced Hawkeye Command and Control Aircraft Joins the US Navy's Fleet -, 27 March 2014
  31. ^ New Navy E-2D aircraft goes operational -, 16 October 2014
  32. ^ Donald, David, ed. "Grumman E-2 Hawkeye/TE-2/C-2 Greyhound". The Complete Encyclopedia of World Aircraft. Barnes & Nobel Books, 1997. ISBN 0-7607-0592-5.
  33. ^ a b c Eden, Paul, ed. "Northrop Grumman E-2 Hawkeye, Eyes of the fleet". Encyclopedia of Modern Military Aircraft. Amber Books, 2004. ISBN 1-904687-84-9.
  34. ^ "French, U.S. Navy celebrate 10 years of E-2C excellence." PEO(T) Public Affairs, 3 August 2010.
  35. ^ Japan Officially Selects Osprey, Global Hawk, E-2D -, 21 November 2014
  36. ^ "Planned replacement for AEW E-2C" (Press release).  
  37. ^ "RSAF's First Gulfstream 550 Airborne Early Warning Aircraft Returns to Singapore" (Press release). MINDEF. 19 February 2009. Retrieved 4 October 2010. 
  38. ^ "RSAF's Gulfstream 550 Airborne Early Warning Aircraft is Fully Operational" (Press release). MINDEF. 13 April 2012, updated 27 May 2012. Retrieved 10 June 2012. 
  39. ^ Egozi, Arie (23 March 2010). "Israeli air force showcases G550 surveillance fleet".  
  40. ^ a b E-2 Hawkeye
  41. ^ Taiwan Air Power E-2T page
  42. ^ Defense Security Cooperation Agency News Release. October 3, 2008, retrieved Sept. 14, 2009
  43. ^ Chen, Pei-haung; Kao Y.L. (2013-03-09). "Taiwan receives upgraded E-2K early warning aircraft". Focus Taiwan. Retrieved 2013-06-02. 
  44. ^ Indian Navy Mulls Northrop Advanced Hawkeye
  45. ^ Indian Navy Pursues Fixed-Wing Carrier AEW
  46. ^ "US clears Hawkeye E-2D aircraft for India". Times of India, 14 September 2009.
  47. ^ Godfrey 1977, pp. 9–10.
  48. ^ a b c d Jackson 2003, p. 687.
  49. ^ a b c Winchester Air International December 2005, p. 47.
  50. ^ Taiwan Air Power E-2C/T page
  51. ^ "US Navy/Marine Corps BuNos Third Series (150139 to 156169)".  
  52. ^ a b c d e "World Air Forces 2014". Flightglobal Insight. 2014. 
  53. ^ "IAI rolls out first upgraded E-2C Hawkeye". Retrieved 10 October 2014. 
  54. ^ "VAW 112". Retrieved 10 October 2014. 
  55. ^ "VAW 113". Retrieved 10 October 2014. 
  56. ^ "Carrier Airborne Early Warning Squadron 115". Retrieved 10 October 2014. 
  57. ^ "VAW 116". Retrieved 10 October 2014. 
  58. ^ "VAW 117". Retrieved 10 October 2014. 
  59. ^ "VAW 120". Retrieved 10 October 2014. 
  60. ^ "VAW 121". Retrieved 10 October 2014. 
  61. ^ "VAW 123". Retrieved 10 October 2014. 
  62. ^ "VAW 124". Retrieved 10 October 2014. 
  63. ^ "VAW 125". Retrieved 10 October 2014. 
  64. ^ "VAW 126". Retrieved 10 October 2014. 
  65. ^ "VX-20 HistoryHistory". Retrieved 10 October 2014. 
  66. ^ "Israel operates 707 in AEW role". Retrieved 10 October 2014. 
  67. ^ "Singapore declares G550 AEW fully operational". Retrieved 10 October 2014. 
  68. ^ "Air Station St. Augustine, Florida". Retrieved 10 October 2014. 
  69. ^ a b c
  70. ^
  71. ^ The US Navy - Fact File: E-2 Hawkeye early warning and control aircraft
  72. ^
  73. ^ Jackson 2003, pp. 688–689.
  • Donald, David, ed. "E-2 Hawkeye". Warplanes of the Fleet. AIRtime, 2004. ISBN 1-880588-81-1.
  • Eden, Paul, ed. (2004). The Encyclopedia of Modern Military Aircraft. London: Amber Books.  
  • Godfrey, David W. H. "Hawkeye:A New Dimension in Tactical Warfare". Air International, January 1977, Vol 12 No 1. Bromley, UK:Fine Scroll. pp. 7–13, 42–44.
  • Jackson, Mark. Jane's All The World's Aircraft 2003–2004. Coulsdon, UK: Jane's Information Group, 2003. ISBN 0-7106-2537-5.
  • Neubeck, Ken. E-2 Hawkeye Walk Around. Squadron/Signal Publications, 2008. ISBN 0-89747-555-0.
  • Swanborough, Gordon and Peter M. Bowers. United States Navy Aircraft since 1911. London:Putnam, Second edition, 1976. ISBN 0-370-10054-9.
  • Taylor, John W. R. Jane's All The World's Aircraft 1976–77. London:Jane's Yearbooks, 1976. ISBN 0-354-00538-3.
  • Winchester, Jim. "E-2 Hawkeye Developments". Air International, December 2005, Vol 69 No 6. Stamford, UK:Key Publishing. pp. 46–49.
  • Winchester, Jim, ed. Military Aircraft of the Cold War (The Aviation Factfile). London: Grange Books plc, 2006. ISBN 1-84013-929-3.

External links

  • E-2 fact file and E-2C Hawkeye history page on US Navy site
  • E-2 page on
  • E-2D Hawkeye: The Navy’s New AWACS on Defense Industry Daily
  • "Northrop Grumman E-2D Advanced Hawkeye Completes First Flight", Northrop Grumman, 3 August 2007
  • Gallery of photographs of the French E-2C Hawkeye on (French)
  • Taiwan Air Power E-2T page
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.