World Library  
Flag as Inappropriate
Email this Article


Cytochrome P450, family 11, subfamily A, polypeptide 1
Available structures
PDB Ortholog search: RCSB
RNA expression pattern

Cholesterol side-chain cleavage enzyme is commonly referred to as P450scc, where "scc" is an acronym for side-chain cleavage. P450scc is a mitochondrial enzyme that catalyzes conversion of cholesterol to pregnenolone. This is the first reaction in the process of steroidogenesis in all mammalian tissues that specialize in the production of various steroid hormones.[2]

cholesterol + 3 NADPH + 3 H+ + 3 O2 ⇄ pregnenolone + 4-methylpentanal + 3 NADP+ + 3 H2O

P450scc is a member of the cytochrome P450 superfamily of enzymes (family 11, subfamily A, polypeptide 1). The gene name is CYP11A1.[3]


cholesterol monooxygenase (side-chain-cleaving)
EC number CAS number IntEnz BRENDA ExPASy KEGG MetaCyc metabolic pathway
PRIAM PDB structures PDBsum
Gene Ontology EGO

The systematic name of this enzyme class is cholesterol,reduced-adrenal-ferredoxin:oxygen oxidoreductase (side-chain-cleaving). Other names include:

Tissue and intracellular localization

The highest level of the cholesterol side-chain cleavage system is found in the adrenal cortex and the corpus luteum.[2] The system is also expressed at high levels in steroidogenic granulosa cells in the ovary, and Leydig cells in the testis.[2] During pregnancy, the placenta also expresses significant levels of this enzyme system.[4] P450scc is also present at much lower levels in several other tissue types, including the brain.[5] In the adrenal cortex, the concentration of adrenodoxin is similar to that of P450scc, but adrenodoxin reductase is expressed at lower levels.[6]

Immunofluorescence studies using specific antibodies against P40scc system enzymes have demonstrated that proteins are located exclusively within the mitochondria.[7][8] P450scc is associated with the inner mitochondrial membrane, facing the interior (matrix).[9] Adrenodoxin and adrenodoxin reductase are soluble peripheral membrane proteins located inside the mitochondrial matrix that appear to associate with each other primarily through electrostatic interactions.[10]

Mechanism of action

P450scc catalyzes the conversion of cholesterol to pregnenolone in three monooxygenase reactions. These involve 2 hydroxylations of the cholesterol side-chain, which generate, first, 22R-hydroxycholesterol and then 20alpha,22R-dihydroxycholesterol. The final step cleaves the bond between carbons 20 and 22, resulting in the production of pregnenolone and isocaproic acid.

Each monooxygenase step requires 2 electrons (reducing equivalents). The initial source of the electrons is NADPH.[11] The electrons are transferred from NADPH to P450scc via two electron transfer proteins: adrenodoxin reductase[12] and adrenodoxin.[13][14] All three proteins together constitute the cholesterol side-chain cleavage complex.

The involvement of three proteins in cholesterol side-chain cleavage reaction raises the question of whether the three proteins function as a ternary complex as reductase:adrenodoxin:P450. Both spectroscopic studies of adrenodoxin binding to P450scc and kinetic studies in the presence of varying concentrations of adrenodoxin reductase demonstrated that the reductase competes with P450scc for binding to adrenodoxin. These results demonstrated that the formation of a functional ternary complex is not possible.[13] From these studies, it was concluded that the binding sites of adrenodoxin to its reductase and to P450 are overlapping and, as a consequence, adrenodoxin functions as a mobile electron shuttle between reductase and P450.[13] These conclusions have been confirmed by structural analysis of adrenodoxin and P450 complex.[1]

The process of electron transfer from NADPH to P450scc is not tightly coupled; that is, during electron transfer from adrenodoxin reductase via adrenodoxin to P450scc, a certain portion of the electrons leak outside of the chain and react with O2, generating superoxide radicals.[15] Steroidogenic cells include a diverse array of antioxidant systems to cope with the radicals generated by the steroidogenic enzymes.[16]


In each steroidogenic cell, the expression of the P450scc system proteins is regulated by the trophic hormonal system specific for the cell type.[2] In adrenal cortex cells from zona fasciculata, the expression of the mRNAs encoding all three P450scc proteins is induced by corticotropin (ACTH).[8][17] The trophic hormones increase CYP11A1 gene expression through transcription factors such as steroidogenic factor 1 (SF-1), by the α isoform of activating protein 2 (AP-2) in the human, and many others.[17][18] The production of this enzyme is inhibited notably by the nuclear receptor DAX-1.[17]

P450scc is always active, however its activity is limited by the supply of cholesterol in the inner membrane. The supplying of cholesterol to this membrane (from the outer mitochondrial membrane) is, thus, considered the true rate-limiting step in steroid production. This step is mediated primarily by the steroidogenic acute regulatory protein (StAR or STARD1). Upon stimulation of a cell to make steroid, the amount of StAR available to transfer cholesterol to the inner membrane limits how fast the reaction can go (the acute phase). With prolonged (chronic) stimulation, it is thought that cholesterol supply becomes no longer an issue and that the capacity of the system to make steroid (i.e., level of P450scc in the mitochondria) is now more important.

Corticotropin (ACTH) is a hormone that is released from the anterior pituitary in response to stress situations. A study of the steroidogenic capacity of the adrenal cortex in infants with acute respiratory disease demonstrated that indeed during disease state there is a specific increase in the steroidogenic capacity for the synthesis of the glucocorticoid cortisol but not for the mineralocorticoid aldosterone or androgen DHEAS that are secreted from other zones of the adrenal cortex.[19]


Mutations in the CYP11A1 gene result in a steroid hormone deficiency, causing a minority of cases of the rare and potentially fatal condition lipoid congenital adrenal hyperplasia.[20][21][22]

See also


Further reading

Steroid hormone synthesis

Additional images

External links

  • Medical Subject Headings (MeSH)
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.