World Library  
Flag as Inappropriate
Email this Article

Particle velocity

Article Id: WHEBN0000505929
Reproduction Date:

Title: Particle velocity  
Author: World Heritage Encyclopedia
Language: English
Subject: Particle displacement, Acoustic wave, Sound, Acoustic impedance, Sound energy
Collection: Acoustics, Fluid Dynamics, Physical Quantities, Sound, Sound Measurements
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Particle velocity

Sound measurements
Characteristic
Symbols
 Sound pressure  p, SPL
 Particle velocity  v, SVL
 Particle displacement  δ
 Sound intensity  I, SIL
 Sound power  P, SWL
 Sound energy  W
 Sound energy density  w
 Sound exposure  E, SEL
 Acoustic impedance  Z
 Speed of sound  c
 Audio frequency  AF
 Transmission loss  TL

Particle velocity is the velocity of a particle (real or imagined) in a medium as it transmits a wave. The SI unit of particle velocity is the metre per second (m/s). In many cases this is a longitudinal wave of pressure as with sound, but it can also be a transverse wave as with the vibration of a taut string.

When applied to a sound wave through a medium of a fluid like air, particle velocity would be the physical speed of a parcel of fluid as it moves back and forth in the direction the sound wave is travelling as it passes.

Particle velocity should not be confused with the speed of the wave as it passes through the medium, i.e. in the case of a sound wave, particle velocity is not the same as the speed of sound. The wave moves relatively fast, while the particles oscillate around their original position with a relatively small particle velocity. Particle velocity should also not be confused with the velocity of individual molecules.

In applications involving sound, the particle velocity is usually measured using a logarithmic decibel scale called particle velocity level. Mostly pressure sensors (microphones) are used to measure sound pressure which is then propagated to the velocity field using Green's function.

Contents

Mathematical definition

Particle velocity, denoted v, is defined by

\mathbf v = \frac{\partial \mathbf \delta}{\partial t}

where δ is the particle displacement.

Progressive sine waves

The particle displacement of a progressive sine wave is given by

\delta(\mathbf{r},\, t) = \delta_\mathrm{m} \cos(\mathbf{k} \cdot \mathbf{r} - \omega t + \varphi_{\delta, 0}),

where

It follows that the particle velocity and the sound pressure along the direction of propagation of the sound wave x are given by

v(\mathbf{r},\, t) = \frac{\partial \delta}{\partial t} (\mathbf{r},\, t) = \omega \delta_\mathrm{m} \cos\!\left(\mathbf{k} \cdot \mathbf{r} - \omega t + \varphi_{\delta, 0} + \frac{\pi}{2}\right) = v_\mathrm{m} \cos(\mathbf{k} \cdot \mathbf{r} - \omega t + \varphi_{v, 0}),
p(\mathbf{r},\, t) = -\rho c^2 \frac{\partial \delta}{\partial x} (\mathbf{r},\, t) = \rho c^2 k_x \delta_\mathrm{m} \cos\!\left(\mathbf{k} \cdot \mathbf{r} - \omega t + \varphi_{\delta, 0} + \frac{\pi}{2}\right) = p_\mathrm{m} \cos(\mathbf{k} \cdot \mathbf{r} - \omega t + \varphi_{p, 0}),

where

  • vm is the amplitude of the particle velocity;
  • \varphi_{v, 0} is the phase shift of the particle velocity;
  • pm is the amplitude of the acoustic pressure;
  • \varphi_{p, 0} is the phase shift of the acoustic pressure.

Taking the Laplace transforms of v and p with respect to time yields

\hat{v}(\mathbf{r},\, s) = v_\mathrm{m} \frac{s \cos \varphi_{v,0} - \omega \sin \varphi_{v,0}}{s^2 + \omega^2},
\hat{p}(\mathbf{r},\, s) = p_\mathrm{m} \frac{s \cos \varphi_{p,0} - \omega \sin \varphi_{p,0}}{s^2 + \omega^2}.

Since \varphi_{v,0} = \varphi_{p,0}, the amplitude of the specific acoustic impedance is given by

z_\mathrm{m}(\mathbf{r},\, s) = |z(\mathbf{r},\, s)| = \left|\frac{\hat{p}(\mathbf{r},\, s)}{\hat{v}(\mathbf{r},\, s)}\right| = \frac{p_\mathrm{m}}{v_\mathrm{m}} = \frac{\rho c^2 k_x}{\omega}.

Consequently, the amplitude of the particle velocity is related to those of the particle displacement and the sound pressure by

v_\mathrm{m} = \omega \delta_\mathrm{m},
v_\mathrm{m} = \frac{p_\mathrm{m}}{z_\mathrm{m}(\mathbf{r},\, s)}.

Particle velocity level

Sound velocity level (SVL) or acoustic velocity level or particle velocity level is a logarithmic measure of the effective particle velocity of a sound relative to a reference value.
Sound velocity level, denoted Lv and measured in dB, is defined by[1]

L_v = \ln\!\left(\frac{v}{v_0}\right)\!~\mathrm{Np} = 2 \log_{10}\!\left(\frac{v}{v_0}\right)\!~\mathrm{B} = 20 \log_{10}\!\left(\frac{v}{v_0}\right)\!~\mathrm{dB},

where

  • v is the root mean square particle velocity;
  • v0 is the reference particle velocity;
  • 1 Np = 1 is the neper;
  • 1 B = (1/2) ln(10) is the bel;
  • 1 dB = (1/20) ln(10) is the decibel.

The commonly used reference particle velocity in air is[2]

v_0 = 5 \times 10^{-8}~\mathrm{m/s}.

The proper notations for sound velocity level using this reference are Lv/(5 × 10−8 m/s) or Lv (re 5 × 10−8 m/s), but the notations dB SVL, dB(SVL), dBSVL, or dBSVL are very common, even if they are not accepted by the SI.[3]

See also

References

  1. ^ "Letter symbols to be used in electrical technology – Part 3: Logarithmic and related quantities, and their units", IEC 60027-3 Ed. 3.0, International Electrotechnical Commission, 19 July 2002.
  2. ^ Ross Roeser, Michael Valente, Audiology: Diagnosis (Thieme 2007), p. 240.
  3. ^ Thompson, A. and Taylor, B. N. sec 8.7, "Logarithmic quantities and units: level, neper, bel", Guide for the Use of the International System of Units (SI) 2008 Edition, NIST Special Publication 811, 2nd printing (November 2008), SP811 PDF

External links

  • Ohm's Law as Acoustic Equivalent. Calculations
  • Relationships of Acoustic Quantities Associated with a Plane Progressive Acoustic Sound Wave
  • The particle Velocity Can Be Directly Measured with a Microflown
  • Acoustic Particle-Image Velocimetry. Development and Applications
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.