World Library  
Flag as Inappropriate
Email this Article

Pentaerythritol tetranitrate

Article Id: WHEBN0000042451
Reproduction Date:

Title: Pentaerythritol tetranitrate  
Author: World Heritage Encyclopedia
Language: English
Subject: Semtex, Umar Farouk Abdulmutallab, Antianginal, Abdullah al-Asiri, Pentaerythritol
Publisher: World Heritage Encyclopedia

Pentaerythritol tetranitrate

Pentaerythritol tetranitrate
Skeletal formula
Ball-and-stick model
CAS number  YesY
ChemSpider  YesY
ATC code C01
Jmol-3D images Image 1
Molecular formula C5H8N4O12
Molar mass 316.14 g mol−1
Appearance White crystalline solid[1]
Density 1.77 g/cm3 at 20 °C
Melting point 141.3 °C (286.3 °F; 414.5 K)
Boiling point 180 °C (356 °F; 453 K) (decomposes above 150 °C (302 °F))
Explosive data
Shock sensitivity Medium
Friction sensitivity Medium
Explosive velocity 8400 m/s (density 1.7 g/cm3)
RE factor 1.66
Autoignition temperature 190 °C (374 °F; 463 K)
Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa)
 YesY   YesY/N?)

Pentaerythritol tetranitrate (PETN), also known as PENT, PENTA, TEN, corpent, penthrite (or—rarely and primarily in German—as nitropenta), is the nitrate ester of pentaerythritol, and is structurally very similar to nitroglycerin. Penta refers to the five carbon atoms of the neopentane skeleton.

PETN is best known as an explosive. It is one of the most powerful high explosives known, with a relative effectiveness factor of 1.66.[2]

PETN mixed with a plasticizer forms a plastic explosive.[3] As a mixture with RDX and other minor additives, it forms another plastic explosive called Semtex as well. The compound was discovered in the bombs used by the 2001 Shoe Bomber, in the 2009 Christmas Day bomb plot, and in the 2010 cargo plane bomb plot.[4] On 7 September 2011, a bomb suspected to have used PETN exploded near the High Court of Delhi in India claiming 13 lives and injuring more than 70.[5]

It is also used as a vasodilator drug to treat certain heart conditions, such as for management of angina.[6][7]


Penthrite was first synthesized in 1891 by Bernhard Tollens and P. Wigand by nitration of pentaerythritol.[8] The production of PETN started in 1912, when it was patented by the German government. PETN was used by the German Army in World War I.[9]


PETN is practically acetone (about 15 g/100 g of the solution at 20 °C, 55 g/100 g at 60 °C) and dimethylformamide (40 g/100 g of the solution at 40 °C, 70 g/100 g at 70 °C). PETN forms eutectic mixtures with some liquid or molten aromatic nitro compounds, e.g. trinitrotoluene (TNT) or tetryl. Due to its highly symmetrical structure, PETN is resistant to attack by many chemical reagents; it does not hydrolyze in water at room temperature or in weaker alkaline aqueous solutions. Water at 100 °C or above causes hydrolysis to dinitrate; presence of 0.1% nitric acid accelerates the reaction. Addition of TNT and other aromatic nitro derivatives lowers thermal stability of PETN.

The chemical stability of PETN is of interest, because of the use of PETN in aging stockpiles of weapons. A review has been published.[10] Neutron radiation degrades PETN, producing carbon dioxide and some pentaerythritol dinitrate and trinitrate. Gamma radiation increases the thermal decomposition sensitivity of PETN, lowers melting point by few degrees Celsius, and causes swelling of the samples. Like other nitrate esters, the primary degradation mechanism is the loss of nitrogen dioxide; this reaction is autocatalytic.. Studies were performed on thermal decomposition of PETN.[11]

In the environment, PETN undergoes iron metal.[12]


Production is by the reaction of pentaerythritol with concentrated nitric acid to form a precipitate which can be recrystallized from acetone to give processable crystals.[13]

C(CH2OH)4 + 4 HNO3 → C(CH2ONO2)4 + 4 H2O

Variations of a method first published in a US Patent 2,370,437 by Acken and Vyverberg (1945 to Du Pont) forms the basis of all current commercial production.

PETN is manufactured by numerous manufacturers as a powder about the consistency of fine popcorn salt, or together with nitrocellulose and plasticizer as thin plasticized sheets (e.g. Primasheet 1000 or Detasheet). PETN residues are easily detectable in hair of people handling it.[14] The highest residue retention is on black hair; some residues remain present even after washing.[15][16]

Explosive use

The most common use of PETN is as an explosive with high brisance. It is more difficult to detonate than primary explosives, so dropping or igniting it will typically not cause an explosion (at atmospheric pressure it is difficult to ignite and burns relatively slowly), but is more sensitive to shock and friction than other secondary explosives such as TNT or tetryl.[13][17] Under certain conditions a deflagration to detonation transition can occur.

It is rarely used alone, but primarily used in booster and bursting charges of small caliber ammunition, in upper charges of detonators in some land mines and shells, and as the explosive core of detonation cord.[18] PETN is the least stable of the common military explosives, but can be stored without significant deterioration for longer than nitroglycerin or nitrocellulose.[19]

During World War II, PETN was most importantly used in exploding-bridgewire detonators for the atomic bombs. These exploding-bridgewire detonators gave more precise detonation, compared with primacord. PETN was used for these detonators because it was safer than primary explosives like lead azide: while it was sensitive, it would not detonate below a threshold amount of energy.[20] Exploding bridgewires containing PETN remain used in current nuclear weapons. In spark detonators, PETN is used to avoid the need for primary explosives; the energy needed for a successful direct initiation of PETN by an electric spark ranges between 10–60 mJ.

Its basic explosion characteristics are:

  • Explosion energy: 5810 kJ/kg (1390 kcal/kg), so 1 kg of PETN has the energy of 1.24 kg TNT.
  • Detonation velocity: 8350 m/s (1.73 g/cm3), 7910 m/s (1.62 g/cm3), 7420 m/s (1.5 g/cm3), 8500 m/s (pressed in a steel tube)
  • Volume of gases produced: 790 dm3/kg (other value: 768 dm3/kg)
  • Explosion temperature: 4230 °C
  • Oxygen balance: -6.31 atom -g/kg
  • Melting point: 141.3 °C (pure), 140–141 °C (technical)
  • Trauzl lead block test: 523 cm3 (other values: 500 cm3 when sealed with sand, or 560 cm3 when sealed with water)
  • Critical diameter (minimal diameter of a rod that can sustain detonation propagation): 0.9 mm for PETN at 1 g/cm3, smaller for higher densities (other value: 1.5 mm)

In mixtures

PETN is used in a number of compositions. It is a major ingredient of the Semtex plastic explosive. It is also used as a component of pentolite, a 50/50 blend with TNT; a shaped charge of 8 ounces (0.23 kg) of pentolite, used in the M9A1 (bazooka) rockets, can penetrate up to 5 inches (130 mm) of armor. The XTX8003 extrudable explosive, used in the W68 and W76 nuclear warheads, is a mixture of 80% PETN and 20% of Sylgard 182, a silicone rubber.[21] It is often phlegmatized by addition of 5–40% of wax, or by polymers (producing polymer-bonded explosives); in this form it is used in some cannon shells up to 30 mm caliber, though unsuitable for higher calibers. It is also used as a component of some gun propellants and solid rocket propellants. Nonphlegmatized PETN is stored and handled with approximately 10% water content. PETN alone cannot be cast as it explosively decomposes slightly above its melting point, but it can be mixed with other explosives to form castable mixtures.

PETN can be initiated by a laser.[22] A pulse with duration of 25 nanoseconds and 0.5–4.2 joules of energy from a Q-switched ruby laser can initiate detonation of a PETN surface coated with a 100 nm thick aluminium layer in less than half microsecond.

PETN has been replaced in many applications by RDX, which is thermally more stable and has longer shelf life.[23] PETN can be used in some ram accelerator types.[24] Replacement of the central carbon atom with silicon produces Si-PETN, which is extremely sensitive.[25][26]

Terrorist use

In 1983, the "Maison de France" house in Berlin was brought to a near-total collapse by the detonation of 24 kilograms (53 lb) of PETN by terrorist Johannes Weinrich.[27]

In 1999, Alfred Heinz Reumayr used PETN as the main charge for his fourteen improvised explosive devices that he constructed in a thwarted attempt to damage the Trans-Alaska Pipeline System.

In 2001, al-Qaeda member Richard Reid, the "Shoe Bomber", used PETN in the sole of his sneaker in his unsuccessful attempt to blow up American Airlines Flight 63 from Paris to Miami.[16][28] He had intended to use the solid triacetone triperoxide (TATP) as a detonator.[17]

In 2009, PETN was used in an attempt by al-Qaeda in the Arabian Peninsula to murder the Saudi Arabian Deputy Minister of Interior Prince Muhammad bin Nayef, by Saudi suicide bomber Abdullah Hassan al Asiri. The target survived and the bomber died in the blast. The PETN was hidden in the bomber's rectum, which security experts described as a novel technique.[29][30][31]

On December 25, 2009, PETN was found in the underwear of Umar Farouk Abdulmutallab, the "Underwear bomber", a Nigerian with links to al-Qaeda in the Arabian Peninsula.[32] According to U.S. law enforcement officials,[33] he had attempted to blow up Northwest Airlines Flight 253 while approaching Detroit from Amsterdam.[34] Abdulmutallab had tried, unsuccessfully, to detonate approximately 80 grams (2.8 oz) of PETN sewn into his underwear by adding liquid from a syringe;[35] however, only a small fire resulted.[17]

In the al-Qaeda in the Arabian Peninsula October 2010 cargo plane bomb plot, two PETN-filled printer cartridges were found at East Midlands Airport and in Dubai on flights bound for the U.S. on an intelligence tip. Both packages contained sophisticated bombs concealed in computer printer cartridges filled with PETN.[4][36] The bomb found in England contained 400 grams (14 oz) of PETN, and the one found in Dubai contained 300 grams (11 oz) of PETN.[36] Hans Michels, professor of safety engineering at University College London, told a newspaper that 6 grams (0.21 oz) of PETN—"around 50 times less than was used—would be enough to blast a hole in a metal plate twice the thickness of an aircraft's skin".[37] In contrast, according to an experiment conducted by a BBC documentary team designed to simulate Abdulmutallab's Christmas Day bombing, using a Boeing 747 airplane, even 80 grams of PETN was not sufficient to materially damage the airplane's fuselage.[38]


In the wake of terrorist PETN bomb plots, an article in Scientific American noted that even if all cargo were screened, PETN is difficult to detect because it has a very low vapor pressure at room temperature, meaning very little of it gets into the air around the bomb, where it can be detected.[4] The Los Angeles Times noted in November 2010 that because of its more stable molecules, and lower vapor, it is more difficult to detect by bomb-sniffing dogs and the trace swabs then used by the U.S. Transportation Security Administration.[16]

Many technologies can be used to detect PETN,[39] a number of which have been implemented in public screening applications, primarily for air travel. PETN is just one of a number of explosive chemicals typically of interest in that area, and it belongs to a family of common nitrate-based explosive chemicals which can often be detected by the same tests.

One technology, detectors that test swabs wiped on passengers and their baggage for traces of explosives, is generally reserved for travelers who are thought to merit additional scrutiny. A second type of machine, whole-body imaging scanners, use radio-frequency electromagnetic waves, low-intensity X-rays, or T-rays of terahertz frequency to detect objects under clothing; these devices were of limited availability because of cost, privacy groups' opposition and industry concerns about bottlenecks.[40]

Both parcels in the 2010 cargo plane bomb plot were x-rayed without the bombs being spotted.[41] Qatar Airways said the PETN bomb "could not be detected by x-ray screening or trained sniffer dogs".[42] The Bundeskriminalamt received copies of the Dubai x-rays, and an investigator said German staff would not have identified the bomb either.[41][43] New airport security procedures followed in the U.S., largely to protect against PETN.[16]

Medical use

Like nitroglycerin (glyceryl trinitrate) and other nitrates, PETN is also used medically as a vasodilator in the treatment of heart conditions.[6][7] These drugs work by releasing the signaling gas nitric oxide in the body. The heart medicine Lentonitrat is nearly pure PETN.[44]

Monitoring of oral usage of the drug by patients has been performed by determination of plasma levels of several of its hydrolysis products, pentaerythritol dinitrate, pentaerythritol mononitrate and pentaerythritol, in plasma using gas chromatography-mass spectrometry.[45]


Pentaerythritol tetranitrate synthesis: Acken Marshall F, Vyverberg Jr John C. Du Pont; U.S. Patent 2,370,437 (1945).

See also


  1. ^ a b "Wildlife Toxicity Assessment for pentaerythritol tetranitrate". U.S. Army Center for Health Promotion and Preventive Medicine. November 2001 
  2. ^ "PETN (Pentaerythritol tetranitrate)". Retrieved March 29, 2010. 
  3. ^ John Childs (1994). "Explosives". A dictionary of military history and the art of war ( 
  4. ^ a b c Greenemeier, Larry. "Exposing the Weakest Link: As Airline Passenger Security Tightens, Bombers Target Cargo Holds". Scientific American. Retrieved November 3, 2010. 
  5. ^ Kumar, Vinay (September 7, 2011). "Nationwide alert as NIA takes up probe". The Hindu (Chennai, India). 
  6. ^ a b "New Drugs".  
  7. ^ a b Manuchair S. Ebadi (1998). CRC desk reference of clinical pharmacology ( 
  8. ^ Tollens, B.; Wigand, P. (1891). "Über den Penta-Erythrit, einen aus Formaldehyd und Acetaldehyd synthetisch hergestellten vierwerthigen Alkohol (On penta-erythritol, a tetravalent alcohol synthetically produced from formaldehyde and acetaldehyde)". Justus Liebig's Annalen der Chemie 265: 316–340.  
  9. ^ Stettbacher, Alfred (1933). Die Schiess- und Sprengstoffe (2. völlig umgearb. Aufl. ed.). Leipzig: Barth. p. 459. 
  10. ^ M. F. Foltz. "Aging of Pentaerythritol Tetranitrate (PETN)".  
  11. ^ Thermal decomposition of PENT and HMX over a wide temperature range by V.N. German et al.
  12. ^ Li Zhuang, Lai Gui and Robert W. Gillham (2008). "Degradation of Pentaerythritol Tetranitrate (PETN) by Granular Iron".  
  13. ^ a b Jacques Boileau, Claude Fauquignon, Bernard Hueber, Hans H. Meyer (2005), "Explosives",  
  14. ^ Winslow, Ron. (2009-12-29) A Primer in PETN – Retrieved on 2010-02-08.
  15. ^ Oxley, Jimmie C.; Smith, James L.; Kirschenbaum, Louis J.; Shinde, Kajal. P.; Marimganti, Suvarna (2005). "Accumulation of Explosives in Hair". Journal of Forensic Sciences 50: 1.  
  16. ^ a b c d,0,2000499.story. 
  17. ^ a b c Kenneth Chang (December 27, 2009). "Explosive on Flight 253 Is Among Most Powerful". The New York Times. 
  18. ^ "Primacord Technical Information". Dyno Nobel. Retrieved April 22, 2009. 
  19. ^ PETN (chemical compound) – Britannica Online Encyclopedia. Retrieved on 2010-02-08.
  20. ^ Lillian Hoddeson, Paul W. Henriksen, Roger A. Meade, Catherine L. Westfall, Gordon Baym, Richard Hewlett, Alison Kerr, Robert Penneman, Leslie Redman, Robert Seidel (2004). A Technical History of Los Alamos During the Oppenheimer Years, 1943–1945 ( 
  21. ^ Information Bridge: DOE Scientific and Technical Information – Sponsored by OSTI. (2009-11-23). Retrieved on 2010-02-08.
  22. ^ Tarzhanov, V. I.; Zinchenko, A. D.; Sdobnov, V. I.; Tokarev, B. B.; Pogrebov, A. I.; Volkova, A. A. (1996). "Laser initiation of PETN". Combustion, Explosion, and Shock Waves 32: 454.  
  23. ^ US Army – Encyclopedia of Explosives and Related Items, vol.8
  24. ^ Simulation of ram accelerator with PETN layer, Arkadiusz Kobiera and Piotr Wolanski, XXI ICTAM, 15–21 August 2004, Warsaw, Poland
  25. ^ Wei-Guang Liu et al. (2009). "Explanation of the Colossal Detonation Sensitivity of Silicon Pentaerythritol Tetranitrate (Si-PETN) Explosive". J. Am. Chem. Soc. 131 (22): 7490–1.  
  26. ^ Computational Organic Chemistry » Si-PETN sensitivity explained. (2009-07-20). Retrieved on 2010-02-08.
  27. ^ "Article detailing attack on Maison de France in Berlin (German)". December 13, 1999. Retrieved November 4, 2010. 
  28. ^ "'Shoe bomb suspect 'did not act alone'". BBC News. January 25, 2002. Retrieved April 22, 2009. 
  29. ^ "Saudi suicide bomber hid IED in his anal cavity". Homeland Security Newswire. September 9, 2009 
  30. ^ Andrew England (November 1, 2010). "Bomb clues point to Yemeni terrorists". Financial Times. 
  31. ^ "Saudi Bombmaker Key Suspect in Yemen Plot". CBS News. November 1, 2010. Retrieved November 2, 2010. 
  32. ^ "Al Qaeda Claims Responsibility for Attempted Bombing of U.S. Plane". FOX News Network. December 28, 2009. Retrieved December 29, 2009. 
  33. ^ "Criminal Complaint" (PDF).  
  34. ^ "'Investigators: Northwest Bomb Plot Planned by al Qaeda in Yemen'". ABC News. December 26, 2009. Retrieved December 26, 2009. 
  35. ^ Explosive in Detroit terror case could have blown hole in airplane, sources say Retrieved on 2010-02-08.
  36. ^ a b Shane, Scott; Worth, Robert F. (November 1, 2010). "Early Parcels Sent to U.S. Were Eyed as Dry Run". The New York Times. 
  37. ^ "Parcel bombs could rip 50 planes in half".  
  38. ^ Underwear Bomber' Could not have Blown Up Plane"'".  
  39. ^ Committee on the Review of Existing and Potential Standoff Explosives Detection Techniques, National Research Council, Existing and Potential Standoff Explosives Detection Techniques, National Academies Press, Washington, D.C., 2004, p. 77
  40. ^ "Equipment to detect explosives is available". The Washington Post. Retrieved on 2010-02-08.
  41. ^ a b "Foiled Parcel Plot: World Scrambles to Tighten Air Cargo Security".  
  42. ^ "Q&A: Air freight bomb plot".  
  43. ^ "Passenger jets carried Dubai bomb".  
  44. ^ Russek H. I. (1966). "The therapeutic role of coronary vasodilators: glyceryl trinitrate, isosorbide dinitrate, and pentaerythritol tetranitrate.". American Journal of Medical Science 252 (1): 9–20.  
  45. ^ R. Baselt, Disposition of Toxic Drugs and Chemicals in Man, 8th edition, Biomedical Publications, Foster City, CA, 2008, pp. 1201–1203.

Further reading

  • Cooper, Paul (1997). Explosives Engineering. Weinheim: Wiley-VCH.  
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.