World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0002040574
Reproduction Date:

Title: Petrol  
Author: World Heritage Encyclopedia
Language: English
Subject: Petroleum, Punjab, Pakistan, Stonemasonry, List of oil fields, Portable stove, Volkswagen Jetta, Ford Fiesta, Rover 800 Series, British South American Airways, Ford Verona
Publisher: World Heritage Encyclopedia


This article is about the fuel and industrial solvent. For other uses, see Gasoline (disambiguation).
"Petrol" redirects here. For other uses, see Petrol (disambiguation).

Gasoline /ˈɡæsəln/, or petrol /ˈpɛtrəl/, is a transparent, petroleum-derived oil that is used primarily as a fuel in internal combustion engines. It consists mostly of organic compounds obtained by the fractional distillation of petroleum, enhanced with a variety of additives. Some gasolines also contain ethanol as an alternative fuel. In North America, the term gasoline is often shortened in colloquial usage to gas, despite the ambiguity created by the latter term's scientific association with non-liquids in gaseous form. This requires petroleum fuel in a gaseous state to be referred to as natural gas to avoid confusion with liquid "gas". Elsewhere petrol is the common name in the UK, Republic of Ireland, Australia and in most of the other Commonwealth countries. Under normal conditions, its physical state is a liquid, and it petroleum-derived name avoids confusion with liquefied petroleum gas or natural gas.



Gasoline is more volatile than diesel oil, Jet-A, or kerosene, not only because of the base constituents, but also because of additives. Volatility is often controlled by blending with butane, which boils at −0.5 °C. The volatility of gasoline is measured by the Reid vapor pressure (RVP) test. This volatility rises with an increase in the ambient temperature. In hot weather, gasoline is blended with components of higher molecular weight and this controls the tendency to greater volatility. In colder weather however, too little volatility can result in difficulty in starting an engine.

In hot weather, excessive volatility can cause vapor lock, because the suction of the fuel pump has reduced the pressure in the fuel line to below the vapor pressure of the liquid fuel. This causes the column of fuel in the line to separate, producing a bubble of vapor that blocks the flow of the liquid, rendering the pump ineffective and starving the engine of fuel. This effect mainly occurs with camshaft-driven (engine mounted) fuel pumps. Vehicles with fuel injection require that the fuel be pressurised within the line therefore an electric pump is used, typically located in the fuel tank. Vapor lock is rarely a problem in a vehicle with fuel injection.

In the US, volatility is regulated to reduce the emission of unburned hydrocarbons by the use of so-called reformulated gasoline that is less prone to evaporation. In Australia, summer gasoline volatility limits are set by state governments and vary among states. Most countries simply have summer, winter, and perhaps intermediate fuel formulations.

Volatility standards may be relaxed (allowing more gasoline components into the atmosphere) during gasoline shortages. For example, on 31 August 2005, in response to Hurricane Katrina, the US permitted the sale of nonreformulated gasoline in some urban areas, effectively permitting an early switch from summer to winter-grade gasoline. As mandated by EPA administrator Stephen L. Johnson, this "fuel waiver" was made effective until 15 September 2005.[1]

Modern automobiles are also equipped with an evaporative emissions control system ( 'EVAP system' in automotive jargon), which collects evaporated fuel from the fuel tank in a charcoal-filled canister while the engine is stopped, and then releases the collected vapors to the engine for consumption when the engine is running (usually after it has reached normal operating temperature). The evaporative emissions control system also includes a sealed gas cap to prevent vapors from escaping via the fuel filler tube.[2]

Octane rating

Spark ignition engines are designed to burn gasoline in a controlled process called deflagration. In some cases, however, the unburned mixture can autoignite (detonate from pressure and heat alone, rather than ignite from the spark plug at exactly the right time), which causes rapid pressure rise which can damage the engine. This phenomenon is often referred to as engine knocking or end-gas knock. One way to reduce knock in spark ignition engines is to increase the gasoline's resistance to autoignition, which is expressed by its octane rating.

Octane rating is measured relative to a mixture of 2,2,4-trimethylpentane (an isomer of octane) and n-heptane. There are different conventions for expressing octane ratings, so a fuel may have several different octane ratings based on the measure used. Research octane number (RON) for commercially-available gasoline varies by country. In Finland, Sweden, and Norway, 95 RON is the standard for regular unleaded gasoline and 98 RON is also available as a more expensive option. In the UK, ordinary regular unleaded gasoline is 91 RON (not commonly available), premium unleaded gasoline is always 95 RON, and super unleaded is usually 97-98 RON. However, both Shell and BP produce fuel at 102 RON for cars with high-performance engines, and the supermarket chain Tesco began in 2006 to sell super unleaded gasoline rated at 99 RON. In the US, octane ratings in unleaded fuels can vary between 86 and 87 AKI (91-92 RON) for regular, through 89-90 AKI (94-95 RON) for mid-grade (European premium), up to 90-94 AKI (95-99 RON) for premium (European super).

The octane rating became important as the military sought higher output for aircraft engines in the late 1930s and the 1940s. A higher octane rating allows a higher compression ratio or supercharger boost, and thus higher temperatures and pressures, which translate to higher power output. Some scientists even predicted that a nation with a good supply of high octane gasoline would have the advantage in air power. In 1943, the Rolls Royce Merlin aero engine produced 1,320 horsepower (984 kW) using 100 RON fuel from a modest 27 liter displacement. Towards the end of the second world war, experiments were conducted using 150 RON fuel (100/150 avgas), obtained by adding 2,5% aniline to 100 octane avgas.[3]


Quality gasoline should be stable almost indefinitely if stored properly. Such storage should be in an airtight container (to prevent oxidation or water vapors mixing), and which can withstand the vapor pressure of the gasoline without venting ( to prevent the loss of the more volatile fractions), and at a stable cool temperature (to reduce the excess pressure from liquid expansion, and to reduce the rate of any decomposition reactions). When gasoline is not stored correctly, gums and solids may be created, which can corrode system components and accumulate on wetted surfaces, resulting in a condition called "stale fuel". Gasoline containing ethanol is especially subject to absorbing atmospheric moisture, then forming gums, solids, or two phases (a hydrocarbon phase floating on top of a water-alcohol phase).

The presence of these degradation products in fuel tank, lines, carburetor or fuel injection components makes it harder to start the engine, or causes reduced engine performance. On resumption of regular engine use, the buildup is often eventually cleaned out by the flow of fresh gasoline. The addition of a fuel stabilizer to gasoline can extend the life of fuel that is not or cannot be stored properly. Some typical fuel stabilizers are proprietary mixtures containing mineral spirits, isopropyl alcohol, 1,2,4-trimethylbenzene,or other additives. Fuel stabilizer is commonly used for small engines, such as lawnmower and tractor engines, especially when their use is seasonal (low to no use for one or more seasons of the year). Users have been advised to keep gasoline containers more than half full and properly capped to reduce air exposure, to avoid storage at high temperatures, to run an engine for ten minutes to circulate the stabilizer through all components prior to storage, and to run the engine at intervals to purge stale fuel from the carburetor.[4]

Energy content

Energy is obtained from the combustion of gasoline by the conversion of a hydrocarbon to carbon dioxide and water. The combustion of octane follows this reaction:

2 C8H18 + 25 O2 → 16 CO2 + 18 H2O

gasoline contains about 42.4 MJ/kg (120 MJ/US gal, 11.8 kWh/kg) quoting the lower heating value. Gasoline blends differ, and therefore actual energy content varies according to the season and producer by up to 4% more or less than the average, according to the US EPA. On average, about 74 L of gasoline (19.5 US gal, 16.3 imp gal) are available from a barrel of crude oil (about 46% by volume), varying due to quality of crude and grade of gasoline. The remainder are products ranging from tar to naptha.[5]

A high-octane-rated fuel, such as liquefied petroleum gas (LPG) has an overall lower power output at the typical 10:1 compression ratio of a gasoline engine. However, with an engine tuned to the use of LPG (i.e. via higher compression ratios, such as 12:1 instead of 10:1), this lower power output can be eliminated. This is because higher-octane fuels allow for a higher compression ratio without knocking, resulting in a higher cylinder temperature, which improves efficiency. Also, increased mechanical efficiency is created by a higher compression ratio through the concomitant higher expansion ratio on the power stroke, which is by far the greater effect. The higher expansion ratio extracts more work from the high-pressure gas created by the combustion process. The applicable formula is PV=nRT. An Atkinson cycle engine uses the timing of the valve events to produce the benefits of a high expansion ratio without the disadvantages, chiefly detonation, of a high compression ratio. A high expansion ratio is also one of the two key reasons for the efficiency of Diesel engines, along with the elimination of pumping losses due to throttling of the intake air flow. A high compression ratio can be viewed as a necessary evil to have a high expansion ratio.

The lower energy content (per liter) of LPG in comparison to gasoline is due mainly to its lower density. Energy content per kilogram is higher than for gasoline (higher hydrogen to carbon ratio, for an example see Standard enthalpy of formation).


The density of gasoline ranges from 0.71–0.77 kg/l (719.7 kg/m3 ; 0.026 lb/in3; 6.073 lb/US gal; 7.29 lb/imp gal), higher densities having a greater volume of aromatics.[6] Gasoline floats on water; water cannot generally be used to extinguish a gasoline fire, unless used in a fine mist.

Chemical analysis and production

Gasoline is produced in oil refineries. Material separated from crude oil via distillation, called virgin or straight-run gasoline, does not meet specifications for modern engines (particularly the octane rating, see below), but comprises part of the blend.

The bulk of a typical gasoline consists of hydrocarbons with between four and 12 carbon atoms per molecule (commonly referred to as C4-C12).[4]

The various refinery streams blended to make gasoline have different characteristics. Some important streams are:

  • straight-run gasoline is distilled directly from crude oil. Once the leading source of fuel, its low octane rating required lead additives. It is low in aromatics (depending on the grade of crude oil), containing some cycloalkanes (naphthenes) and no olefins. About 0-20% of gasoline is derived from this material, in part because the supply of this fraction is insufficient and its RON is too low.
  • reformate, produced in a catalytic reformer has a high octane rating with high aromatic content, and very low olefins (alkenes). Most of the benzene, toluene, and xylene (the so-called BTX) are more valuable as chemical feedstocks and are thus removed to some extent.
  • cat cracked gasoline or cat cracked naphtha, produced from a catalytic cracker, with a moderate octane rating, high olefins (alkene) content, and moderate aromatics level.
  • hydrocrackate (heavy, mid, and light) produced from a hydrocracker, with medium to low octane rating and moderate aromatic levels.
  • alkylate is produced in an alkylation unit, involving the addition of isobutane to alkenes giving branched chains but low aromatics.
  • isomerate is obtained by isomerizing low octane straight run gasoline to iso-parafins (like isooctane).

The terms above are the jargon used in the oil industry, but terminology varies.

Overall, a typical gasoline is predominantly a mixture of paraffins (alkanes), cycloalkanes (naphthenes) , and olefins (alkenes). The actual ratio depends on:

  • the oil refinery that makes the gasoline, as not all refineries have the same set of processing units;
  • crude oil feed used by the refinery;
  • the grade of gasoline, in particular, the octane rating.

Currently, many countries set limits on gasoline aromatics in general, benzene in particular, and olefin (alkene) content. Such regulations led to increasing preference for high octane pure paraffin (alkane) components, such as alkylate, and is forcing refineries to add processing units to reduce benzene content.

Gasoline can also contain other organic compounds, such as organic ethers (deliberately added), plus small levels of contaminants, in particular organosulfur compounds, but these are usually removed at the refinery.


Antiknock additives

Most countries have phased out leaded fuel. Different additives have replaced the lead compounds. The most popular additives include aromatic hydrocarbons, ethers and alcohol (usually ethanol or methanol).


Main article: Tetraethyllead

Gasoline, when used in high-compression internal combustion engines, tends to autoignite (detonate) causing damaging "engine knocking" (also called "pinging" or "pinking") noise. To address this problem, tetraethyllead (TEL) was widely adopted as an additive for gasoline in the 1920s. With the discovery of the extent of environmental and health damage caused by the lead, however, and the incompatibility of lead with catalytic converters, leaded gasoline was phased out beginning in 1973. By 1995, leaded fuel accounted for only 0.6% of total gasoline sales and less than 2000 short tons (1814 t) of lead per year. From 1 January 1996, the U.S. Clean Air Act banned the sale of leaded fuel for use in on-road vehicles. The use of TEL also necessitated other additives, such as dibromoethane.


Methylcyclopentadienyl manganese tricarbonyl (MMT) is used in Canada and in Australia to boost octane. It also helps old cars designed for leaded fuel run on unleaded fuel without need for additives to prevent valve problems. Its use in the US has been restricted by regulations.

Fuel stabilizers (antioxidants and metal deactivator)

Gummy, sticky resin deposits result from oxidative degradation of gasoline upon long term storage. These harmful deposits arise from the oxidation of alkenes and other minor components in gasoline (see drying oils). Improvements in refinery techniques have generally reduced the susceptibility of gasolines to these problems. Previously, catalytically or thermally cracked gasolines are most susceptible to oxidation. The formation of these gums is accelerated by copper salts, which can be neutralized by additives call metal deactivators.

This degradation can be prevented through the addition of 5–100 ppm of antioxidants, such as phenylenediamines and other amines.[4] Hydrocarbons with a bromine number of 10 or above can be protected with the combination of unhindered or partially hindered phenols and oil soluble strong amine bases, such as hindered phenols. "Stale" gasoline can be detected by a colorimetric enzymatic test for organic peroxides produced by oxidation of the gasoline.[7]

Gasolines are also treated with metal deactivators, which are compounds that sequester (deactivate) metal salts that otherwise accelerate the formation of gummy residues. The metal impurities might arise from the engine itself or as contaminants in the fuel.


Gasoline, as delivered at the pump, also contains additives to reduce internal engine carbon buildups, improve combustion, and to allow easier starting in cold climates. High levels of detergent can be found in Top Tier Detergent Gasolines. These gasolines exceed the U.S. EPA's minimum requirement for detergent content. The specification for Top Tier Detergent gasolines was developed by four automakers: GM, Honda, Toyota and BMW. According to the bulletin, the minimal EPA requirement is not sufficient to keep engines clean.[8] Typical detergents include alkylamines and alkyl phosphates at the level of 50-100 ppm.[4]


European Union

In the EU, 5% ethanol can be added within the common gasoline spec (EN 228). Discussions are ongoing to allow 10% blending of ethanol (available in Finnish, French and German gas stations). In Finland most gasoline stations sell 95E10, which is 10% of ethanol; and 98E5, which is 5% ethanol. Most gasoline sold in Sweden has 5-15% ethanol added.


In Brazil, the Brazilian National Agency of petroleum, Natural Gas and Biofuels (ANP) requires gasoline for automobile use to have from 18 to 25% of ethanol added to its composition.[9]


Legislation requires retailers to label fuels containing ethanol on the dispenser, and limits ethanol use to 10% of petrol in Australia. Such petrol is commonly called E10 by major brands, and it is cheaper than regular unleaded petrol.

United States

The federal Renewable Fuel Standard (RFS) effectively requires refiners and blenders to blend renewable biofuels (mostly ethanol) with gasoline, sufficient to meet a growing annual target of total gallons blended. Although the mandate does not require a specific percentage of ethanol, annual increases in the target combined with declining gasoline consumption has caused the typical ethanol content in gasoline to approach 10%. Most fuel pumps display a sticker that states that the fuel may contain up to 10% ethanol, an intentional disparity that reflects the varying actual percentage. Until late 2010, fuels retailers were only authorized to sell fuel containing up to 10 percent ethanol (E10), and most vehicle warranties (except for flexible fuel vehicles) authorize fuels that contain no more than 10 percent ethanol.[10] In parts of the United States, ethanol is sometimes added to gasoline without an indication that it is a component.


The Government of India in October 2007 decided to make 5% ethanol blending (with gasoline) mandatory. Discussions are ongoing to increase the blending of ethanol to 10%.[11][12]


Main article: Fuel dyes

In Australia, petrol tends to be dyed a light shade of purple.

In South Africa, unleaded fuel is dyed green and lead-replacement fuel is dyed red.

In the United States, aviation gasoline (avgas) is dyed to identify its octane rating and to distinguish it from kerosene-based jet fuel, which is clear.[13]

In Canada and the United Kingdom gasoline for marine and farm use is dyed red and is not subject to road tax.

Oxygenate blending

Oxygenate blending adds oxygen-bearing compounds such as MTBE, ETBE and ethanol. The presence of these oxygenates reduces the amount of carbon monoxide and unburned fuel in the exhaust gas. In many areas throughout the US, oxygenate blending is mandated by EPA regulations to reduce smog and other airborne pollutants. For example, in Southern California, fuel must contain 2% oxygen by weight, resulting in a mixture of 5.6% ethanol in gasoline. The resulting fuel is often known as reformulated gasoline (RFG) or oxygenated gasoline, or in the case of California, California reformulated gasoline. The federal requirement that RFG contain oxygen was dropped on 6 May 2006 because the industry had developed VOC-controlled RFG that did not need additional oxygen.[14]

MTBE use is being phased out in some states due to issues with contamination of ground water. In some places, such as California, it is already banned. Ethanol and, to a lesser extent, the ethanol-derived ETBE are common replacements. Since most ethanol is derived from biomass, such as corn, sugar cane or grain, it is referred to as bioethanol. A common ethanol-gasoline mix of 10% ethanol mixed with gasoline is called gasohol or E10, and an ethanol-gasoline mix of 85% ethanol mixed with gasoline is called E85. The most extensive use of ethanol takes place in Brazil, where the ethanol is derived from sugarcane. In 2004, over 3.4 billion US gallons (2.8 billion imp gal/13 million m³) of ethanol was produced in the United States for fuel use, mostly from corn, and E85 is slowly becoming available in much of the United States, though many of the relatively few stations vending E85 are not open to the general public.[15] The use of bioethanol, either directly or indirectly by conversion of such ethanol to bio-ETBE, is encouraged by the European Union Directive on the Promotion of the use of biofuels and other renewable fuels for transport. Since producing bioethanol from fermented sugars and starches involves distillation, though, ordinary people in much of Europe cannot legally ferment and distill their own bioethanol at present (unlike in the US, where getting a BATF distillation permit has been easy since the 1973 oil crisis).


Environmental considerations

Combustion of 1 US gallon (3.8 L) of gasoline produces 8,788 grams (19.374 lb) of carbon dioxide (2.3 kg/l), a greenhouse gas.[16]

The main concern with gasoline on the environment, aside from the complications of its extraction and refining, is the potential effect on the climate. Unburnt gasoline and evaporation from the tank, when in the atmosphere, react in sunlight to produce photochemical smog. Addition of ethanol increases the volatility of gasoline, potentially worsening the problem.

The chief risks of such leaks come not from vehicles, but from gasoline delivery truck accidents and leaks from storage tanks. Because of this risk, most (underground) storage tanks now have extensive measures in place to detect and prevent any such leaks, such as monitoring systems (Veeder-Root, Franklin Fueling).


The material safety data sheet for unleaded gasoline shows at least 15 hazardous chemicals occurring in various amounts, including benzene (up to 5% by volume), toluene (up to 35% by volume), naphthalene (up to 1% by volume), trimethylbenzene (up to 7% by volume), methyl tert-butyl ether (MTBE) (up to 18% by volume, in some states) and about ten others.[17] Hydrocarbons in gasoline generally exhibit low acute toxicities, with LD50 of 700 – 2700 mg/kg for simple aromatic compounds.[18] Benzene and many antiknocking additives are carcinogenic.


Huffed gasoline is a common intoxicant that has become epidemic in some poorer communities and indigenous groups in Australia, Canada, New Zealand,and some Pacific Islands.[19] In response, Opal fuel has been developed by the BP Kwinana Refinery in Australia, and contains only 5% aromatics (unlike the usual 25%), which weakens the effects of inhalation.[20]


Like other alkanes, gasoline burns in a limited range of its vapor phase and, coupled with its volatility, this makes leaks highly dangerous when sources of ignition are present. Gasoline has a lower explosion limit of 1.4% by volume and an upper explosion limit of 7.6%. If the concentration is below 1.4%, the air-gasoline mixture is too lean and does not ignite. If the concentration is above 7.6%, the mixture is too rich and also does not ignite. However, gasoline vapor rapidly mixes and spreads with air, making unconstrained gasoline quickly flammable. Many accidents involve people using gasoline to start bonfires. The gasoline readily vaporizes and mixes with surrounding air.

Usage and pricing

The United States account for about 44% of the world’s gasoline consumption.[21] In 2003 The US consumed 476.474 gigalitres (1.25871×1011 US gal; 1.04810×1011 imp gal),[22] which equates to 1.3 gigaliters of gasoline each day (about 360 million US or 300 million imperial gallons). The US used about 510 billion liters (138 billion US gal/115 billion imp gal) of gasoline in 2006, of which 5.6% was mid-grade and 9.5% was premium grade.[23]

Western countries have the highest usage rates per person.


Unlike the US, countries in Europe impose substantial taxes on fuels such as gasoline. The price of gasoline in Europe is typically more than twice that in the US. In Italy, due to the amendments imposed by Monti's Government in December 2011, the price of gasoline has passed, in the period of two weeks, from 1.50 €/l (7.48 US$/gal) to 1.75 €/l (8.72 US$/gal); on March, 17th, in a gasoline Station located near Ancona, has reached the psychological threshold of 2 €/l: the price was € 2.001/l (9.97 US$/gal). This chart must be compared to the USA national average price of gasoline of 0.71 €/l .

Pump price (in Euro/liter) 2004 to 2012 lead-free 95 Octane gasoline in selected European countries. To convert prices for Euro/liter to US$/gal, multiply by 4.985 (19 March 2012 US$1.317 = 1.00 Euro).
Dec. 2004
May 2005
July 2007
April 2008
Jan 2009
Mar 2010
Feb 2011
Jan 2012
Feb 2012
Mar 2012
May 2012
Germany 1.19 1.18 1.37 1.43 1.09 1.35 1.50
France 1.05 1.15 1.31 1.38 1.07 1.35 1.53
Italy 1.10 1.23 1.35 1.39 1.10 1.34 1.46 1.75 1.78 1.88 1.82
Netherlands 1.26 1.33 1.51 1.56 1.25 1.54 1.66 1.72
Poland 0.80 0.92 1.15 1.23 0.82 1.12 1.26
Switzerland 0.92 0.98 1.06 1.14 0.88 1.12 1.29 1.40 1.47
Hungary 1.00 1.01 1.13 1.13 0.86 1.22 1.32 1.38 1.44 1.47 1.55

United States

From 1998 to 2004, the price of gasoline fluctuated between $1 and $2 USD per U.S. gallon.[24] After 2004, the price increased until the average gas price reached a high of $4.11 per U.S. gallon in mid-2008, but receded to approximately $2.60 per U.S. gallon by September 2009.[24] More recently, the U.S. experienced an upswing in gas prices through 2011,[25] and by 1 March 2012, the national average was $3.74 per gal.[26]

In the United States, most consumer goods bear pre-tax prices, but gasoline prices are posted with taxes included. Taxes are added by federal, state, and local governments. As of 2009, the federal tax is 18.4¢ per gallon for gasoline and 24.4¢ per gallon for diesel (excluding red diesel).[27] Among states, the highest gasoline tax rates, including the federal taxes as of 2005, are New York (62.9¢/gal), Hawaii (60.1¢/gal), and California (60¢/gal).[25] However, many states' taxes are a percentage and thus vary in amount depending on the cost of the gasoline.

About 9% of all gasoline sold in the US in May 2009 was premium grade, according to the Energy Information Administration. Consumer Reports magazine says, “If [your owner’s manual] says to use regular fuel, do so—there’s no advantage to a higher grade.”[28] The Associated Press said premium gas—which is a higher octane and costs more per gallon than regular unleaded—should be used only if the manufacturer says it is “required”.[29] Cars with turbocharged engines and high compression ratios often specify premium gas because higher octane fuels reduce the incidence of "knock", or fuel pre-detonation.[30] If regular fuel is used, the engine computer usually switches to a less aggressive fuel map to protect the engine, and performance is decreased.


The first automotive combustion engines, so-called Otto engines, were developed in the last quarter of the 19th century in Germany. The fuel was a relatively volatile hydrocarbon obtained from coal gas. With a boiling point near 85 °C (octanes boil about 40 °C higher), it was well suited for early carburetors (evaporators). The development of a "spray nozzle" carburetor enabled the use of less volatile fuels. Further improvements in engine efficiency were attempted at higher compression ratios, but early attempts were blocked by knocking (premature explosion of fuel). In the 1920s, antiknock compounds were introduced by Migley and Boyd, specifically tetraethyllead (TEL). This innovation started a cycle of improvements in fuel efficiency that coincided with the large-scale development of oil refining to provide more products in the boiling range of gasolines. In the 1950s oil refineries started to focus on high octane fuels, and then detergents were added to gasoline to clean the jets and carburetors. The 1970s witnessed greater attention to the environmental consequences of burning gasoline. These considerations led to the phasing out of TEL and its replacement by other antiknock compounds. Subsequently, low-sulfur gasoline was introduced, in part to preserve the catalysts in modern exhaust systems.[4]

Etymology and terminology

"Gasoline" is cited (under the spelling "gasolene") from 1863 in the Oxford English Dictionary. It was never a trademark, although it may have been derived from older trademarks such as "Cazeline" and "Gazeline".[31]

Variant spellings of "gasoline" have been used to refer to raw petroleum since the 16th century.[31] "Petrol" was first used as the name of a refined petroleum product around 1870 by British wholesaler Carless, Capel & Leonard, who marketed it as a solvent.[32] When the product later found a new use as a motor fuel, Frederick Simms, an associate of Gottlieb Daimler, suggested to Carless that they register the trade mark "petrol",[33] but by this time the word was already in general use, possibly inspired by the French pétrole,[31] and the registration was not allowed. Carless registered a number of alternative names for the product, while their competitors used the term "motor spirit" until the 1930s.[34][35]

In many countries, gasoline has a colloquial name derived from that of the chemical benzene (e.g., German Benzin, Dutch benzine, Italian benzina, Chile bencina, Thai เบนซิน bayn sin , Greek βενζίνη venzini, Romanian benzină). Argentina, Uruguay and Paraguay use the colloquial name nafta derived from that of the chemical naphtha.[36]

The terms "mogas", short for motor gasoline, or "autogas", short for automobile gasoline, are used to distinguish automobile fuel from aviation fuel, or "avgas".[37][38][39] In British English, gasoline can refer to a different petroleum derivative historically used in lamps, but this usage is relatively uncommon.

Comparison with other fuels

Volumetric and mass energy density of some fuels compared with gasoline (in the rows with gross and net, they are from[40]):

Fuel type Gross MJ/L      MJ/kg Gross BTU/gal
Gross BTU/gal
Net BTU/gal (U.S.)     RON
Conventional gasoline 34.8 44.4[41] 150,100 125,000 115,400 91-92
Autogas (LPG) (Consisting mostly of C2 to C4 range hydrocarbons) 26.8 46 108
Ethanol 21.2[41] 26.8[41] 101,600 84,600 75,700 108.7[42]
Methanol 17.9 19.9[41] 77,600 64,600 56,600 123
Butanol[3] 29.2 36.6 91-99
Gasohol 31.2 145,200 120,900 112,400 93/94
Diesel(*) 38.6 45.4 166,600 138,700 128,700 25
Biodiesel 33.3-35.7[43] 126,200 117,100
Avgas (high octane gasoline) 33.5 46.8 144,400 120,200 112,000
Jet fuel (kerosene based) 35.1 43.8 151,242 125,935
Jet fuel (naphtha) 127,500 118,700
Liquefied natural gas 25.3 ~55 109,000 90,800
Liquefied petroleum gas 91,300 83,500
Hydrogen 10.1 (at 20 kelvin) 142 130[44]

(*) Diesel fuel is not used in a gasoline engine, so its low octane rating is not an issue; the relevant metric for diesel engines is the cetane number

See also

Energy portal



  • Graph of inflation-corrected historic prices, 1970–2005. Highest in 2005
  • The Low-Down on High Octane Gasoline
  • An abiotic petroleum origins.
  • The Straight Dope)
  • "Here Comes Winter Gasoline" R-Squared Energy Blog 14 September 2006
  • International Fuel Prices 2005 with diesel and gasoline prices of 172 countries
  • EIA — Gasoline and Diesel Fuel Update
  • World Internet News: "Big Oil Looking for Another Government Handout", April 2006.
  • Durability of various plastics: Alcohols vs. Gasoline
  • Dismissal of the Claims of a Biological Connection for Natural petroleum.
  • higher heating value

External links

  • EFOA
  • CNN/Money: Global gas prices
  • EEP: European gas prices
  • Transportation Energy Data Book
  • Energy Supply Logistics Searchable Directory of US Terminals
  • 2011 NACS Annual Fuels Report
  • Definition of basic terms, Graphs of Gas prices. all in Slovak language
  • Gasoline from Vinegar | MIT Technology Review
  • High octane fuel, leaded and LRP gasoline — article from
  • CDC - NIOSH Pocket Guide to Chemical Hazards


  • Down the Gasoline Trail Handy Jam Organization, 1935 (Cartoon)
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.