World Library  
Flag as Inappropriate
Email this Article

Protocatechuic acid

Article Id: WHEBN0017079066
Reproduction Date:

Title: Protocatechuic acid  
Author: World Heritage Encyclopedia
Language: English
Subject: Phenols, Phenolic acid, Alchornea cordifolia, Lonicera japonica, Syringic acid
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Protocatechuic acid

Protocatechuic acid
Names
IUPAC name
3,4-Dihydroxybenzoic acid
Other names
3,4-Dihydroxybenzoic acid
PCA
Protocatechuate
Identifiers
 YesY
ChEBI  YesY
ChEMBL  YesY
ChemSpider  YesY
DrugBank  YesY
EC number 202-760-0
Jmol-3D images Image
PubChem
RTECS number UL0560000
Properties
C7H6O4
Molar mass 154.12 g/mol
Appearance light brown solid
Density 1.54 g/cm3
Melting point 221 °C (430 °F; 494 K) (decomposes)
1.24 g/100 mL
Solubility soluble in ethanol, ether
insoluble in benzene
Acidity (pKa) 4.48 [1]
Hazards
Safety data sheet MSDS
NFPA 704
0
2
0
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
 YesY  (: YesY/N?)
UV visible spectrum of protocatechuic acid

Protocatechuic acid (PCA) is a dihydroxybenzoic acid, a type of phenolic acid. It is a major metabolite of antioxidant polyphenols found in green tea. It has mixed effects on normal and cancer cells in in vitro and in vivo studies.[2]

Biological effects

Protocatechuic acid (PCA) is antioxidant and anti-inflammatory. PCA extracted from Hibiscus sabdariffa protected against chemically induced liver toxicity in vivo. In vitro testing documented antioxidant and anti-inflammatory activity of PCA, while liver protection in vivo was measured by chemical markers and histological assessment.[3]

PCA has been reported to induce apoptosis of human leukemia cells, as well as malignant HSG1 cells taken from human oral cavities,[4] but PCA was found to have mixed effects on TPA-induced mouse skin tumours. Depending on the amount of PCA and the time before application, PCA could reduce or enhance tumour growth.[5] Similarly, PCA was reported to increase proliferation and inhibit apoptosis of neural stem cells.[6] In an in vitro model using HL-60leukemia cells, protocatechuic acid showed an antigenotoxic effect and tumoricidal activity.[7]

Occurrence in nature

Protocatechuic acid can be isolated from the stem bark of Boswellia dalzielii.[8]

The hardening of the protein component of insect cuticle has been shown to be due to the tanning action of an agent produced by oxidation of a phenolic substance. In the analogous hardening of the cockroach ootheca, the phenolic substance concerned is protocatechuic acid.[9]

In foods

Açaí oil, obtained from the fruit of the açaí palm (Euterpe oleracea), is rich in protocatechuic acid (630 ± 36 mg/kg).,[10] Protocatechuic acid also exists in the skins of some strains of onion as an antifungal mechanism, increasing endogenous resistance against smudge fungus. It is also found in Allium cepa (17,540 ppm).[11]

PCA occurs in roselle (Hibiscus sabdariffa), which is used worldwide as a food and beverage.[3]

Protocatechuic acid is also found in mushrooms such as Agaricus bisporus[12] or Phellinus linteus.[13]

Metabolism

Protocatechuic acid is one of the main catechins metabolites found in humans after consumption of green tea infusions.[14]

Enzymes

Biosynthesis enzymes
Protocatechuic acid biosynthesis
Degradation enzymes

The enzyme protocatechuate decarboxylase uses 3,4-dihydroxybenzoate to produce catechol and CO2.
The enzyme protocatechuate 3,4-dioxygenase uses 3,4-dihydroxybenzoate and O2 to produce 3-carboxy-cis,cis-muconate.

See also

References

  1. ^ Dawson, R. M. C. et al., Data for Biochemical Research, Oxford, Clarendon Press, 1959.
  2. ^
  3. ^ a b
  4. ^
  5. ^
  6. ^
  7. ^ Anter J, Romero-Jiménez M, Fernández-Bedmar Z, Villatoro-Pulido M, Analla M, Alonso-Moraga A, Muñoz-Serrano A.,"Antigenotoxicity, cytotoxicity, and apoptosis induction by apigenin, bisabolol, and protocatechuic acid." J Med Food. 2011 Mar;14(3):276-83
  8. ^ Antibacterial phenolics from Boswellia dalzielii. Alemika Taiwo E, Onawunmi Grace O and Olugbade, Tiwalade O, Nigerian Journal of Natural Products and Medicines, 2006 (abstract)
  9. ^
  10. ^
  11. ^ http://www.ars-grin.gov/cgi-bin/duke/highchem.pl
  12. ^
  13. ^
  14. ^
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.