World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0014285012
Reproduction Date:

Title: Racemic  
Author: World Heritage Encyclopedia
Language: English
Subject: Proline, Methionine, Alanine, Aspartic acid, Leucine, Threonine, Valine, Malic acid, Menthol, Racemization
Publisher: World Heritage Encyclopedia


In chemistry, a racemic mixture, or racemate /rˈsimt/, is one that has equal amounts of left- and right-handed enantiomers of a chiral molecule. The first known racemic mixture was "racemic acid", which Louis Pasteur found to be a mixture of the two enantiomeric isomers of tartaric acid.


A racemic mixture is denoted by the prefix (±)- or dl- (for sugars the prefix dl- may be used), indicating an equal (1:1) mixture of dextro and levo isomers. Also the prefix rac- (or racem-) or the symbols RS and SR (all in italic letters) are used.

If the ratio is not 1:1 (or is not known), the prefix (+)/(−), d/l- or d/l- (with a slash) is used instead.

The usage of d and l is strongly discouraged by IUPAC. [1][2]


A racemate is optically inactive, meaning that there is no net rotation of plane-polarized light. Although the two enantiomers rotate plane-polarized light in opposite directions, the rotations cancel because they are present in equal amounts.

In contrast to the two pure enantiomers, which have identical physical properties except for the direction of rotation of plane-polarized light, a racemate sometimes has different properties from either of the pure enantiomers. Different melting points are most common, but different solubilities and boiling points are also possible.

Pharmaceuticals may be available as a racemate or as the pure enantiomer, which might have different potencies.


There are four ways in which a racemate can crystallize, three of which H. W. B. Roozeboom had distinguished by 1899:

  • Conglomerate (sometimes racemic conglomerate)
A mechanical mixture of enantiomerically pure crystals of one enantiomer and its opposite. Molecules in the crystal structure have a greater affinity for the same enantiomer than for the opposite enantiomer. The melting point of the racemic conglomerate is always lower than that of the pure enantiomer. Addition of a small amount of one enantiomer to the conglomerate increases the melting point.
  • Racemic compound (sometimes true racemate)
Molecules have a greater affinity for the opposite enantiomer than for the same enantiomer; the substance forms a single crystalline phase in which the two enantiomers are present in an ordered 1:1 ratio in the elementary cell. Adding a small amount of one enantiomer to the racemic compound decreases the melting point. But the pure enantiomer can have a higher or lower melting point than the compound. A special case of racemates are kryptoracemates, in which the enantiomers are not related by improper rotations. The crystals are enantiomorphic, despite containing both enantiomorphs in a 1:1 ratio.[3]
  • Pseudoracemate (sometimes racemic solid solution)
In contrast to the racemic compound or conglomerate, there is no big difference in affinity between the same and opposite enantiomers. Overall, both enantiomers occur in equal proportions in the crystal, but they coexist in an unordered manner in the crystal lattice. Addition of a small amount of one enantiomer changes the melting point just little bit or not at all.
  • Quasiracemate
A quasiracemate is a mixture of two similar but distinct compounds, one of which is left-handed and the other right-handed. Although chemically different, they are sterically similar (isosteric) and are still able to form a racemic crystalline phase. One of the first such racemates studied, by Pasteur in 1853, forms from a 1:2 mixture of the bis ammonium salt of (+)-tartaric acid and the bis ammonium salt of (−)-malic acid in water. Re-investigated in 2008,[4] the crystals formed are dumbbell-shape with the central part consisting of ammonium (+)-bitartrate, whereas the outer parts are a quasiracemic mixture of ammonium (+)-bitartrate and ammonium (−)-bimalate.


The separation of a racemate into its components, the pure enantiomers, is called a chiral resolution. There are various methods, including crystallization, chromatography, and the use of enzymes. The first successful resolution of a racemate was performed by Louis Pasteur, who manually separated the crystals of a conglomerate.


Without a chiral influence (for example a chiral catalyst, solvent or starting material), a chemical reaction that makes a chiral product will always yield a racemate. That can make the synthesis of a racemate cheaper and easier than making the pure enantiomer, because it does not require special conditions. This fact also leads to the question of how biological homochirality evolved on what is presumed to be a racemic primordial earth.

The reagents of, and the reactions that produce, racemic mixtures are said to be "not stereospecific" or "not stereoselective," for their indecision in a particular stereoisomerism.

Racemic pharmaceuticals

Some drug molecules are chiral, and the enantiomers have different effects on biological entities. They can be sold as one enantiomer or as a racemic mixture. Examples include thalidomide, ibuprofen, and salbutamol. Adderall is a mixture of several different amphetamine enantiomers. A single amphetamine dose combines the neutral sulfate salts of dextroamphetamine and amphetamine, with the dextro isomer of amphetamine saccharate and D/L-amphetamine aspartate monohydrate. The prescription analgesic tramadol is also a racemate.

In some cases (e.g., ibuprofen and thalidomide), the enantiomers interconvert or racemize in vivo. This means that preparing a pure enantiomer for medication is largely pointless. However, sometimes samples containing pure enantiomers may be made and sold at a higher cost in cases where the use requires specifically one isomer (e.g., for a stereospecific reagent); compare omeprazole and esomeprazole.

While often only one enantiomer of the drug may be active, in cases like salbutamol[5] and thalidomide, the other enantiomer may be harmful. The (R) enantiomer of thalidomide is effective against morning sickness, while the (S) enantiomer is teratogenic, causing birth defects. Since the drug racemizes, the drug cannot be considered safe for use by women of child-bearing age,[6] and its use is tightly controlled when used for treating other illness.[7]

Methamphetamine is available by prescription under the brand name Desoxyn. The active component of Desoxyn is dextromethamphetamine hydrochloride. This is the right-hand isomer of methamphetamine. The left-handed isomer of methamphetamine, levomethamphetamine, is an OTC drug that is less centrally-acting and more peripherally-acting.

In the development of manufacturing chemical process for a chiral drug, some intermediates and the final active have to be purified by crystallization. Only compounds which crystallized as conglomerates must be selected for crystallization to get enantiomeric quality (see for more complete explanation: Impact Racemate and Conglomerate on purification)

Wallach's rule

Wallach's rule (first proposed by Otto Wallach) states that racemic crystals tend to be denser than their chiral counterparts.[8] This rule has been substantiated by crystallographic database analysis [9]

See also


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.