World Library  
Flag as Inappropriate
Email this Article

Research reactor

Article Id: WHEBN0002794840
Reproduction Date:

Title: Research reactor  
Author: World Heritage Encyclopedia
Language: English
Subject: Nuclear reactor, Neutron, Pool-type reactor, NRX, Enriched uranium
Collection: Neutron, Neutron Sources, Nuclear Reactors, Nuclear Research Reactors
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Research reactor

Research reactors are nuclear reactors that serve primarily as a neutron source. They are also called non-power reactors, in contrast to power reactors that are used for electricity production, heat generation, or maritime propulsion.

Contents

  • Purpose 1
  • Technical aspects 2
  • Conversion to LEU 3
  • Designers and constructors 4
  • Classes of research reactors 5
  • Research centers 6
  • References 7
  • External links 8

Purpose

The neutrons produced by a research reactor are used for neutron scattering, non-destructive testing, analysis and testing of materials, production of radioisotopes, research and public outreach and education. Research reactors that produce radioisotopes for medical or industrial use are sometimes called isotope reactors. Reactors that are optimised for beamline experiments nowadays compete with spallation sources.

Technical aspects

Research reactors are simpler than power reactors and operate at lower temperatures. They need far less fuel, and far less fission products build up as the fuel is used. On the other hand, their fuel requires more highly enriched uranium, typically up to 20% U-235, although some use 93% U-235; while 20% enrichment is not generally considered usable in nuclear weapons, 93% is commonly referred to as "weapons grade". They also have a very high power density in the core, which requires special design features. Like power reactors, the core needs cooling, typically natural or forced convection with water, and a moderator is required to slow the neutron velocities and enhance fission. As neutron production is their main function, most research reactors benefit from reflectors to reduce neutron loss from the core.

Conversion to LEU

The International Atomic Energy Agency and the U.S. Department of Energy initiated a program in 1978 to develop the means to convert research reactors from using highly enriched uranium to the use of low enriched uranium, in support of its nonproliferation policy.[1][2] By that time the U.S. had supplied research reactors and highly enriched uranium to 41 countries as part of its Atoms for Peace program. In 2004, the U.S. Department of Energy extended its Foreign Research Reactor Spent Nuclear Fuel Acceptance program until 2019.[3]

Also in 2004, the Bush Administration.

Designers and constructors

While in the 1950s, 1960s and 1970s there were a number of companies that specialized in the design and construction of research reactors, the activity of this market cooled down afterwards, and many companies withdrew.

The market has consolidated today into a few companies that concentrate the key projects on a worldwide basis.

The most recent international tender (1999) for a research reactor was that organized by ANSTO for the design, construction and commissioning of the OPAL reactor. Four companies were prequalified: AECL, INVAP, Siemens and Technicatom. The project was awarded to INVAP that built the reactor. In recent years, AECL withdrew from this market, and Siemens and Technicatom activities were merged into AREVA.

Classes of research reactors

Research centers

- see also the sections on Research Reactors in List of nuclear reactors.

Research centers that operate a reactor:

Decommissioned research reactors:

References

  1. ^ "CRP on Conversion of Miniature Neutron Source Research Reactors (MNSR) to Low Enriched Uranium (LEU)". Nuclear Fuel Cycle & Waste Technology. International Atomic Energy Agency. 13 January 2014. Retrieved 25 October 2015. 
  2. ^ [5]
  3. ^ [6]
  • WNA Information Paper # 61: Research Reactors
  • Nuclear Nonproliferation: DOE Needs to Take Action to Further Reduce the Use of Weapons-Usable Uranium in Civilian Research Reactors, GAO, July 2004, GAO-04-807

External links

  • Searchable list of Nuclear Research Reactors in the world
  • The National Organization of Test, Research, and Training Reactors, Inc.
  • Neutronsources.org
  • NMI3 - EU-FP7 Integrated Infrastructure Initiative for Neutron Scattering and Muon Spectroscopy


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.